Spelling suggestions: "subject:"8pores bactérienne"" "subject:"biopores bactérienne""
1 |
Détection rapide de spores de Bacillus par hybridation in situ en fluorescenceFilion, Geneviève 13 April 2018 (has links)
Introduction : L'hybridation in situ en fluorescence (FISH) est souvent utilisée pour l'étude des populations microbiennes hétérogènes. Toutefois, cette méthode n'est pas adaptée pour détecter des bactéries sous forme de spores, vue leur grande résistance aux traitements de perméabilisation conventionnels. Cependant, les bactéries formant des spores ont un rôle écologique, économique et médical important. Le but de cette étude est de développer des protocoles de perméabilisation rapides afin de détecter des spores de Bacillus par FISH. Méthodes : Un protocole pour les spores de B. megaterium a été adapté et optimisé pour les modèles choisis (B. cereus, B. atrophaeus et B. megaterium). Des sondes universelles et spécifiques ont été utilisées lors de l'hybridation. L'effet du traitement de perméabilisation a été évalué à Laide de la microscopie électronique à transmission et à balayage. Par la suite, les protocoles ont été adaptés pour permettre l'entrée de grosses molécules (comme la streptavidine) afin de permettre l'utilisation de méthode d'amplification de signal. Résultats : Avec les protocoles développés, les spores de Bacillus ont été détectées avec des sondes par FISH. La microscopie électronique à balayage a permis d'observer les différences de surface entre les spores traitées et non traitées. Des spores de Bacillus ont été détectées avec les protocoles adaptés pour la streptavidine. Conclusion : Des protocoles efficaces ont été développés pour détecter rapidement des spores de Bacillus par FISH. En utilisant cette technique, il est possible de détecter des spores de Bacillus en moins d'une heure.
|
2 |
Étude de l'effet de solutions électro-activées combinées avec des traitements thermiques modérés et de nisine sur l'inactivation des spores de Clostridium sporogenes PA 3679El Jaam, Omar 24 April 2018 (has links)
Les inconvénients associés à l’application des traitements thermiques élevés lors de la conservation des aliments sont nombreux, allant des coûts énergétiques élevés jusqu’à la détérioration de la valeur nutritive et organoleptique des aliments transformés. La tendance des consommateurs se dirige de plus en plus vers la consommation des aliments peu transformés, salubres et de haute valeur nutritive et sensorielle. Ainsi, afin de répondre à leurs besoins et pour minimiser les effets néfastes dus aux traitements thermiques élevés, le recours à de nouvelles techniques de conservation des aliments est devenu nécessaire. Ainsi, l’objectif principal de ce projet de doctorat était de trouver une nouvelle alternative aux traitements thermiques élevés afin de produire des aliments peu transformés ayant deux caractéristiques : une haute valeur nutritionnelle et organoleptique tout en étant salubre. Pour atteindre cet objectif, la technologie de l’électro-activation en solution, en combinaison avec des traitements thermiques modérés et de la nisine, a été mise à l’étude dans ce projet. Pour cela, huit solutions aqueuses (acétate et citrate de potassium avec et sans KCl) ont été électro-activées dans un réacteur d’électro-activation modulé avec des membranes échangeuses d’anions et de cations. Une fois électro-activées, ces solutions ont été combinées avec des températures modérées, entre 25 et 95 C, et d’une bactériocine de source naturelle, la nisine. Ainsi, l’activité synergique de différentes combinaisons impliquant ces trois facteurs a été testée dans des conditions modèles, ainsi qu’avec une matrice alimentaire végétale, sur l’inactivation des spores de Clostridium sporogenes PA 3679 utilisé comme un substitut non pathogène de Clostridium botulinum. Dans un premier temps, des solutions aqueuses d’acétate de potassium et de citrate de potassium, avec ou sans ajout de chlorure de potassium dans les deux cas, ont été électro-activées sous différentes intensités de courant électrique (100, 200, 300 et 400 mA) pendant une heure. Pour chaque type de solution, seules celles qui avaient le plus bas pH et le plus haut potentiel d’oxydoréduction (POR) ont été retenues pour la suite du projet. Par la suite, les solutions électro-activées retenues ont été testées, seules et combinées avec différents traitements thermiques modérés, pour leur effet d’inactivation des spores de C. sporogenes PA 3679 dans des conditions modèles. L’effet sporicide détecté a été validé par observation sous microscope électronique à transmission. Également, l’efficacité des traitements avec des solutions électro-activées, combinées avec la nisine à différentes concentrations, a été testée contre les spores de C. sporogenes PA 3679 dans une purée des haricots verts. Il a été démontré que ces solutions électro-activées induisaient une réduction significative des populations de spores de C. sporogenes PA 3679, mais le pouvoir tampon du milieu, induit par les matières organiques des haricots verts, a provoqué une baisse significative du degré d’inactivation des spores de C. sporogenes PA 3679 par rapport à celui détecté dans des conditions modèles. La combinaison de la nisine avec les solutions électro-activées et les traitements thermiques modérés était capable de récupérer une partie de l’activité sporicide initiale (obtenues dans des conditions modèles). L’activité sporicide finale obtenue a été validée par observation sous microscope électronique à transmission. Finalement, testée dans un milieu contenant des tiges intactes (entières) des haricots verts, une augmentation significative de l’activité sporicide a été détectée en combinant les solutions électro-activées d’acétate de potassium et de citrate de potassium avec la nisine et un traitement thermique modéré représentant le barème thermique utilisé pour le blanchiment des légumes (95 C). Ainsi, le pouvoir protecteur de la purée des haricots pour les spores de C. sporogenes PA 3679 a été mis en évidence. En conclusion, deux combinaisons permettant un traitement efficace contre les spores de C. sporogenes PA 3679 ont été suggérées. La première est une combinaison d’une solution d'acétate de potassium électro-activée à 400 mA pendant 60 minutes combinée avec de la nisine à une concentration de 1000 UI/mL et un traitement thermique modéré de 95 °C pendant 15 minutes. La seconde consiste à combiner une solution de citrate de potassium électro-activée à 400 mA pendant 60 minutes avec la nisine à une concentration de 1000 UI/ml et un traitement thermique de 115 °C pendant 15 minutes. / The severe heat treatments used for the preservation of foods, especially the canned, is associated with different disadvantages ranging from high energy costs of the process to the deterioration of the nutritional and organoleptic value of the processed foods. Currently, consumers are increasingly turning their attention to the consumption of safe, low-processed foods with high nutritional value and organoleptic value. Thus, in order to meet their needs (requirements) and to minimize the negative effects of the processing technologies, due to the high heat treatments, the search of new food preservation techniques is necessary. Thus, the main aim of this work was to find an alternative method of food preservation in order to produce low-processed foods with respect to two main characteristics: high nutritional value and microbial safety. To reach this objective, four aqueous solutions; namely potassium acetate and potassium citrate with or without KCl added, were electro-activated in an electro-activation reactor composed of three section separated by anion and cation exchange membranes. Once electro-activated, these solutions were combined with moderate heat treatments and nisin at different concentrations. The synergistic activity of all these factors (hurdles) was tested under model conditions and in a food matrix on the inactivation of Clostridium sporogenes PA 3679 spores, used as a non-pathogenic surrogate of Clostridium botulinum. First, the selected aqueous solutions were electro-activated at different current intensities (100, 200, 300 and 400 mA) during one hour. For each type of solution, only solutions with the lowest pH and highest oxido-reduction potential (ORP) were selected to be used in the present study. After that, the selected electro-activated solutions were tested, alone and in combination with moderate heat treatments, for their inactivation effect towards C. sporogenes PA 3679 spores under model conditions (direct contact between the electro-activated solutions and the spores). The obtained results showed high effectiveness of these solutions and the detected sporicidal effect was validated by observation under transmission electron microscope. Finally, the efficacy of the combined treatments was tested against C. sporogenes PA 3679 spores in a green bean puree. The obtained results showed some buffering capacity induced by the organic matter of the puree which was able to significantly decrease the degree of inactivation of C. sporogenes PA 3679 spores compared to the effect we detected in the model conditions. The combination of nisin with the electro-activated solutions and moderate heat treatments was able to recover the initial sporicidal activity which was obtained under the model conditions. The final sporicidal activity detected was validated under transmission electron microscopy. Moreover, this study showed that when tested in intact stems of green beans, the sporicidal activity was very high. These results permitted to validate the protective effect induced by the bean puree to the C. sporogenes PA 3679 spores. In conclusion, two combinations that can be successfully used as effective hurdle were selected. The first one is a combination of an electro-activated potassium acetate solution under 400 mA during 60 min, nisin at a concentration of 1000 IU/mL and a moderate heat treatment of 95 °C applied during 15 minutes. The second hurdle consists of combining an electro-activated solution of potassium citrate under 400 mA during 60 min with 1000 IU/ ml of nisin and a heat treatment of 115 °C applied during 15 minutes. Thus, according to the obtained results, it can be suggested that under appropriate canning conditions, the process can be limited to the blanching step which be conducted at 95 °C.
|
3 |
Développement et utilisation de sources de plasma pour stériliser des instruments médicauxPollak, Jérôme January 2009 (has links)
Thèse numérisée par la Division de la gestion de documents et des archives de l'Université de Montréal.
|
4 |
Développement et utilisation de sources de plasma pour stériliser des instruments médicauxPollak, Jérôme January 2009 (has links)
Thèse numérisée par la Division de la gestion de documents et des archives de l'Université de Montréal
|
5 |
Étude de l'influence de la réassociation en surface des atomes N et O sur l'inactivation des spores bactériennes dans une post-décharge N2-O2 basse pression en fluxCarignan, Denis 01 1900 (has links)
Le recours au plasma pour stériliser des dispositifs médicaux (DM) est un domaine de recherche ne datant véritablement que de la fin des années 1990. Les plasmas permettent, dans les conditions adéquates, de réaliser la stérilisation à basse température (≤ 65°C), tel qu’exigé par la présence de polymères dans les DM et ce contrairement aux procédés par chaleur, et aussi de façon non toxique, contrairement aux procédés chimiques comme, par exemple, l’oxyde d’éthylène (OEt). Les laboratoires du Groupe de physique des plasmas à l’Université de Montréal travaillent à l’élaboration d’un stérilisateur consistant plus particulièrement à employer les effluents d’une décharge N2-%O2 basse pression (2-8 Torrs) en flux, formant ce que l’on appelle une post-décharge en flux. Ce sont les atomes N et O de cette décharge qui viendront, dans les conditions appropriées, entrer en collisions dans la chambre de stérilisation pour y créer des molécules excitées NO*, engendrant ainsi l’émission d’une quantité appréciable de photons UV. Ceux-ci constituent, dans le cas présent, l’agent biocide qui va s’attaquer directement au bagage génétique du micro-organisme (bactéries, virus) que l’on souhaite inactiver. L’utilisation d’une lointaine post-décharge évite du même coup la présence des agents érosifs de la décharge, comme les ions et les métastables. L’un des problèmes de cette méthode de stérilisation est la réduction du nombre de molécules NO* créées par suite de la perte des atomes N et O, qui sont des radicaux connus pour interagir avec les surfaces, sur les parois des matériaux des DM que l’on souhaite stériliser. L’objectif principal de notre travail est de déterminer l’influence d’une telle perte en surface, dite aussi réassociation en surface, par l’introduction de matériaux comme le Téflon, l’acier inoxydable, l’aluminium et le cuivre sur le taux d’inactivation des spores bactériennes. Nous nous attendons à ce que la réassociation en surface de ces atomes occasionne ainsi une diminution de l’intensité UV et subséquemment, une réduction du taux d’inactivation.
Par spectroscopie optique d’émission (SOE), nous avons déterminé les concentrations perdues de N et de O par la présence des matériaux dans le stérilisateur, ainsi que la diminution de l’émission UV en découlant. Nous avons observé que cette diminution des concentrations atomiques est d’autant plus importante que les surfaces sont catalytiques. Au cours de l’étude du phénomène de pertes sur les parois pour un mélange N2-%O2 nous avons constaté l’existence d’une compétition en surface entre les atomes N et O, dans laquelle les atomes d’oxygènes semblent dominer largement. Cela implique qu’au-delà d’un certain %O2 ajouté à la décharge N2, seuls les atomes O se réassocient en surface. Par ailleurs, l’analyse des courbes de survie bi-phasiques des micro-organismes a permis d’établir une étroite corrélation, par lien de cause à effet, entre la consommation des atomes N et O en surface et la diminution du taux d’inactivation des spores dans la première phase. En revanche, nous avons constaté que notre principal agent biocide (le rayonnement ultraviolet) est moins efficace dans la deuxième phase et, par conséquent, il n’a pas été possible d’établir un lien entre la diminution des concentrations et le taux d’inactivation de cette phase-là. / The use of plasmas to sterilize medical devices (MDs) is a research field, which really started only at the end of the 90’s. Plasmas under adequate conditions allow achieving low-temperature (≤ 65°C) sterilization, as required by MDs made from polymers, in contrast to heat-driven sterilization methods, and provide a non-toxic method, in contrast to chemical processes such as performed, for example, with ethylene oxide (EtO). The Groupe de physique des plasmas laboratories at Université de Montréal is working on the design and testing of a sterilizer, which has the peculiarity of utilizing the species outflowing from a N2-%O2 discharge at reduced pressure (2-8 Torrs), which is called a plasma flowing-afterglow. It is the N and O atoms of this discharge mixture that, under appropriate conditions, interact in the sterilization chamber to form NO* excited molecules, generating a significant level of UV photons. These are, in the present case, the actual biocidal agent which will create lethal lesions on the genetic material of the microorganisms (bacteria, viruses) that should be inactivated. Using a flowing late afterglow instead of the discharge itself enables us to avoid the presence of the erosive agents of the discharge (ions, metastable-state particles). A major problem of this sterilization method is the reduction in the concentration of NO* molecules resulting from the losses of the N and O atoms on the surfaces of the MD materials that we want to sterilize. These radicals are, in fact, well-known to interact with surfaces and recombine on them. The main aim of our work is to determine the loss level of such atoms following their surface recombination on materials such as Teflon, stainless steel, aluminum and copper and the corresponding influence of such losses on the inactivation rate of bacterial spores. We can expect that surface recombination of these atoms leads to a reduction in the UV emission intensity and, as a result, in a reduction in the inactivation rate.
Using optical emission spectroscopy (OES), we have determined the loss of N and O concentrations resulting from the presence of various materials in the sterilizer chamber as well as the corresponding decrease in UV emission intensity. We have observed that this reduction in atomic concentrations increases with the catalytic properties (recombination coefficient) of these materials. While examining the surface recombination phenomenon on these various materials, we have noticed a competition between the surface recombination of N and O atoms where the latter appear to play the main role. This implies that above a certain percentage of O2 added to N2, only the O atoms do recombine on these surfaces. On the other hand, the analysis of the bi-phasic survivor curves has enable us to show a strong correlation between the consumption of N and O atoms on surfaces and the reduction in the inactivation rate coefficient in the first phase of the survivor curve. We have also observed that our main biocidal agent is less efficient in the second phase of the survivor curve and, as a result, it was not possible to make a connection between the reduction in N and O atom concentration and the inactivation rate of the second phase.
|
6 |
Étude de l'influence de la réassociation en surface des atomes N et O sur l'inactivation des spores bactériennes dans une post-décharge N2-O2 basse pression en fluxCarignan, Denis 01 1900 (has links)
Le recours au plasma pour stériliser des dispositifs médicaux (DM) est un domaine de recherche ne datant véritablement que de la fin des années 1990. Les plasmas permettent, dans les conditions adéquates, de réaliser la stérilisation à basse température (≤ 65°C), tel qu’exigé par la présence de polymères dans les DM et ce contrairement aux procédés par chaleur, et aussi de façon non toxique, contrairement aux procédés chimiques comme, par exemple, l’oxyde d’éthylène (OEt). Les laboratoires du Groupe de physique des plasmas à l’Université de Montréal travaillent à l’élaboration d’un stérilisateur consistant plus particulièrement à employer les effluents d’une décharge N2-%O2 basse pression (2-8 Torrs) en flux, formant ce que l’on appelle une post-décharge en flux. Ce sont les atomes N et O de cette décharge qui viendront, dans les conditions appropriées, entrer en collisions dans la chambre de stérilisation pour y créer des molécules excitées NO*, engendrant ainsi l’émission d’une quantité appréciable de photons UV. Ceux-ci constituent, dans le cas présent, l’agent biocide qui va s’attaquer directement au bagage génétique du micro-organisme (bactéries, virus) que l’on souhaite inactiver. L’utilisation d’une lointaine post-décharge évite du même coup la présence des agents érosifs de la décharge, comme les ions et les métastables. L’un des problèmes de cette méthode de stérilisation est la réduction du nombre de molécules NO* créées par suite de la perte des atomes N et O, qui sont des radicaux connus pour interagir avec les surfaces, sur les parois des matériaux des DM que l’on souhaite stériliser. L’objectif principal de notre travail est de déterminer l’influence d’une telle perte en surface, dite aussi réassociation en surface, par l’introduction de matériaux comme le Téflon, l’acier inoxydable, l’aluminium et le cuivre sur le taux d’inactivation des spores bactériennes. Nous nous attendons à ce que la réassociation en surface de ces atomes occasionne ainsi une diminution de l’intensité UV et subséquemment, une réduction du taux d’inactivation.
Par spectroscopie optique d’émission (SOE), nous avons déterminé les concentrations perdues de N et de O par la présence des matériaux dans le stérilisateur, ainsi que la diminution de l’émission UV en découlant. Nous avons observé que cette diminution des concentrations atomiques est d’autant plus importante que les surfaces sont catalytiques. Au cours de l’étude du phénomène de pertes sur les parois pour un mélange N2-%O2 nous avons constaté l’existence d’une compétition en surface entre les atomes N et O, dans laquelle les atomes d’oxygènes semblent dominer largement. Cela implique qu’au-delà d’un certain %O2 ajouté à la décharge N2, seuls les atomes O se réassocient en surface. Par ailleurs, l’analyse des courbes de survie bi-phasiques des micro-organismes a permis d’établir une étroite corrélation, par lien de cause à effet, entre la consommation des atomes N et O en surface et la diminution du taux d’inactivation des spores dans la première phase. En revanche, nous avons constaté que notre principal agent biocide (le rayonnement ultraviolet) est moins efficace dans la deuxième phase et, par conséquent, il n’a pas été possible d’établir un lien entre la diminution des concentrations et le taux d’inactivation de cette phase-là. / The use of plasmas to sterilize medical devices (MDs) is a research field, which really started only at the end of the 90’s. Plasmas under adequate conditions allow achieving low-temperature (≤ 65°C) sterilization, as required by MDs made from polymers, in contrast to heat-driven sterilization methods, and provide a non-toxic method, in contrast to chemical processes such as performed, for example, with ethylene oxide (EtO). The Groupe de physique des plasmas laboratories at Université de Montréal is working on the design and testing of a sterilizer, which has the peculiarity of utilizing the species outflowing from a N2-%O2 discharge at reduced pressure (2-8 Torrs), which is called a plasma flowing-afterglow. It is the N and O atoms of this discharge mixture that, under appropriate conditions, interact in the sterilization chamber to form NO* excited molecules, generating a significant level of UV photons. These are, in the present case, the actual biocidal agent which will create lethal lesions on the genetic material of the microorganisms (bacteria, viruses) that should be inactivated. Using a flowing late afterglow instead of the discharge itself enables us to avoid the presence of the erosive agents of the discharge (ions, metastable-state particles). A major problem of this sterilization method is the reduction in the concentration of NO* molecules resulting from the losses of the N and O atoms on the surfaces of the MD materials that we want to sterilize. These radicals are, in fact, well-known to interact with surfaces and recombine on them. The main aim of our work is to determine the loss level of such atoms following their surface recombination on materials such as Teflon, stainless steel, aluminum and copper and the corresponding influence of such losses on the inactivation rate of bacterial spores. We can expect that surface recombination of these atoms leads to a reduction in the UV emission intensity and, as a result, in a reduction in the inactivation rate.
Using optical emission spectroscopy (OES), we have determined the loss of N and O concentrations resulting from the presence of various materials in the sterilizer chamber as well as the corresponding decrease in UV emission intensity. We have observed that this reduction in atomic concentrations increases with the catalytic properties (recombination coefficient) of these materials. While examining the surface recombination phenomenon on these various materials, we have noticed a competition between the surface recombination of N and O atoms where the latter appear to play the main role. This implies that above a certain percentage of O2 added to N2, only the O atoms do recombine on these surfaces. On the other hand, the analysis of the bi-phasic survivor curves has enable us to show a strong correlation between the consumption of N and O atoms on surfaces and the reduction in the inactivation rate coefficient in the first phase of the survivor curve. We have also observed that our main biocidal agent is less efficient in the second phase of the survivor curve and, as a result, it was not possible to make a connection between the reduction in N and O atom concentration and the inactivation rate of the second phase.
|
Page generated in 0.0537 seconds