• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 7
  • 3
  • 3
  • Tagged with
  • 13
  • 11
  • 7
  • 7
  • 7
  • 6
  • 6
  • 6
  • 5
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Security analysis of steganalyzers / Analyse de la sécurité des stéganalyzers

Fadil, Yousra Ahmed 09 May 2017 (has links)
De nos jours, le développement de la stéganalyse et de la stéganographie est incontournable, et peut être utilisé à des fins légales comme illégales, comme dans toute autre application. Le travail présenté dans cette thèse, se concentrant sur ces questions, est divisée en trois parties. La première partie concerne les paramètres permettant d’accroître le niveau de sécurité de la stéganographie afin de faire face aux techniques de stéganalyse. La contribution apportée dans cette première partie concerne l’étude de l’effet de la charge utile, l’extraction des caractéristiques, ainsi que le groupe d’images utilisées dans la phase d’apprentissage et la phase de test. Les résultats des simulations montrent que les techniques de stéganalyse de l’ état de l’art échouent dans la détection des messages secrets intégrés dans les images quand les paramètres changent entre l’apprentissage et le test. Dans la deuxième partie, nous étudions l’impact de la combinaison de plusieurs méthodes stéganographiques sur la détection des messages secrets. Ce travail prend en considération qu’il n’existe pas une procédure idéale, mais que le stéganographieur pourra utiliser n’importe quel schéma ainsi que n’importe quel taux d’embarquement. Dans la troisième et dernière partie, on propose une méthode qui calcule une carte de distorsion précise, en fonction de la dérivée seconde de l’image. La dérivée seconde est utilisée afin de calculer les courbes de niveau, ensuite le message va être caché dans l’image en écartant les courbes de niveaux inférieurs à un certain seuil. Les résultats expérimentaux démontrent que le niveau de sécurité est acceptable comparé aux méthodes stéganographiques de l’état de l’art. / In the recent time, the field of image steganalysis and steganography became more important due to the development in the Internet domain. It is important to keep in mind that the whole process of steganography and steganalysis can be used for legal or illegal operations like any other applications. The work in this thesis can be divided inthree parts. The first one concentrates on parameters that increase the security of steganography methods against steganalysis techniques. In this contribution the effect of the payload, feature extractions, and group of images that are used in the learning stage and testing stage for the steganalysis system are studied. From simulation, we note that the state of the art steganalyzer fails to detect the presence of a secret message when some parameters are changed. In the second part, we study how the presence of many steganography methods may influence the detection of a secret message. The work takes into consideration that there is no ideal situation to embed a secret message when the steganographier can use any scheme with any payloads. In the third part, we propose a method to compute an accurate distortion map depending on a second order derivative of the image. The second order derivative is used to compute the level curve and to embed the message on pixels outside clean level curves. The results of embedding a secret message with our method demonstrate that the result is acceptable according to state of the art steganography.
2

Insertion adaptative en stéganographie : application aux images numériques dans le domaine spatial / Adaptive Steganography : application to digital images in spatial domain

Kouider, Sarra 17 December 2013 (has links)
La stéganographie est l'art de la communication secrète. L'objectif est de dissimuler un message secret dans un médium anodin de sorte qu'il soit indétectable. De nos jours, avec la généralisation d'Internet et l'apparition des supports numériques (fichiers audio, vidéos ou images), plusieurs philosophies de conception de schéma stéganographique ont été proposées. Parmi les méthodes actuelles appliquées aux images numériques naturelles, nous trouvons les méthodes d'insertion adaptative, dont le principe repose sur la modification du médium de couverture avec une garantie d'avoir un certain niveau de sécurité. Ces méthodes représentent une véritable avancée en stéganographie.Dans ce manuscrit, après avoir rappelé les concepts récents de stéganographie adaptative, nous présentons une procédure automatique et complète pour l'insertion adaptative de données secrètes dans des images numériques naturelles. L'approche proposée est une « méta-méthode » basée « oracle », appelée ASO (Adaptive Steganography by Oracle), qui permet de préserver à la fois la distribution de l'image de couverture et la distribution de la base d'images utilisée par l'émetteur. Notre approche permet d'obtenir des résultats nettement supérieurs aux méthodes actuelles de l'état de l'art, et est donc l'une, si ce n'est la meilleure approche du moment. Par ailleurs, nous définissons également un nouveau paradigme en stéganographie qui est la stéganographie par base, ainsi qu'une nouvelle mesure de sélection pour les images stéganographiées, permettant d'améliorer encore plus les performances de notre schéma d'insertion. Les différentes expérimentations, que nous avons effectuées sur des images réelles, ont confirmé la pertinence de cette nouvelle approche. / Steganography is the art of secret communication. The goal is to hide a secret message in an unsuspicious object in such a way that no one can detect it. Nowadays, with the Internet spread and the emergence of digital supports (audio files, videos, or images), several philosophies of designing steganographic methods were proposed. One of the most usual embedding methods used with real digital images is the adaptive embedding algorithms, which is based on the modification of the cover image with a guarantee of a certain security level. These methods represent an important progress in steganography.In this Ph.D. Thesis, we present a fully automated procedure for the adaptive embedding of secret data in digital images. For this, after recalling the recent concepts of adaptive steganography, we first introduce a clear formalism to define a new "meta-method" steganographic approach based on "oracle", whichwe called ASO (Adaptive Steganography by Oracle). Then, we define a new steganographic paradigm called "the steganography by database paradigm", and propose a new selection criterion to further enhance the security of the transmission phase of ASO. Experimental results show that our embedding approach ASO provides the highest level of steganographic security. It is then currently the best or one of the best approaches of the state of the art.
3

Analyse de canaux de communication dans un contexte non coopératif.

Barbier, Johann 28 November 2007 (has links) (PDF)
Dans cette thèse, nous étudions les canaux de communication dans un contexte non coopératif sous l'angle des codes correcteurs d'erreurs, d'une part, et de la stéganographie, d'autre part. Nous prenons la place d'un observateur non légitime qui veut avoir accès à l'information échangée entre deux protagonistes. Nos travaux sur les algorithmes de reconstruction de codes correcteurs, nous ont amenés à proposer un formalisme commun pour l'étude des codes linéaires, des codes convolutifs et des turbo-codes. Nous analysons tout d'abord finement l'algorithme de Sicot-Houcke, puis l'employons ensuite comme brique de base pour concevoir une technique de reconstruction des codes convolutifs totalement automatique et de complexité meilleure que les techniques existantes. Enfin, nous utilisons ces résultats pour retrouver les paramètres des turbo-codeurs. Dans le cadre de l'analyse stéganographique, nous proposons tout d'abord deux nouveaux modèles de sécurité qui mettent en oeuvre des jeux avec des attaquants réels. Nous adaptons ensuite l'analyse RS en un schéma de détection pour l'algorithme Multi Bit Plane Image steganography pour le domaine spatial, proposé par Nguyen et al. à IWDW'06. Enfin, nous développons une approche nouvelle pour analyser les images JPEG. En étudiant les statistiques des coefficients DCT compressés, nous mettons en évidence des détecteurs possédant des performances élevées et indépendantes en pratique de la quantité d'information dissimulée. Nous illustrons ces résultats par un schéma de stéganalyse universelle d'une part, et un schéma de stéganalyse spécifique pour Outguess, F5 et JPHide and JPSeek, d'autre part.
4

Analyse et conception de techniques opérationnelles de stéganographie

Bodin, Nicolas 28 August 2013 (has links) (PDF)
La stéganographie est la science de l'écriture cachée. Dans ce contexte, un individu tente de communiquer avec une entité sans éveiller les soupçons sur le fondement même de la communication. Cette science vient en complément de la cryptographie (sécurisation de la communication -- COMSEC) lorsqu'un besoin d'invisibilité de la communication se fait sentir. Cette thèse, réalisée sous la tutelle et au profit de l'État Major des Armées, traite donc des différentes techniques permettant l'élaboration d'un schéma de stéganographie (sécurisation de la transmission -- TRANSEC), techniquement opérationnel et assez solide, visant à insérer un message d'une dizaine de kilo-octets dans une image JPEG de dimensions raisonnables, et capable de résister aux différentes attaques données par l'état de l'art. Afin de rendre ce schéma le plus sûr possible, les formats de données les plus courants sont étudiés (JPEG, BMP, MP3), avant de définir un premier algorithme d'insertion. Ce dernier, fondé sur les travaux de Hopper, reste conceptuel mais permet de définir les fondements de notre algorithme (nommé IMEI). Ce dernier maximise l'efficacité d'insertion, et donc minimise le nombre de modifications apportées au cover-médium. Une analyse de l'algorithme HUGO présenté dans le contexte du challenge BOSS va nous permettre de définir un protocole de stéganalyse, ainsi qu'une deuxième brique importante pour l'IMEI. La dernière partie de ce manuscrit regroupe la partie stéganalyse, avec l'évaluation de l'IMEI et une stéganalyse réellement opérationnelle dans laquelle nous pouvons retrouver une étude de l'utilisation concrète de la stéganographie et de son évaluation.
5

Évaluation du contenu d'une image couleur par mesure basée pixel et classification par la théorie des fonctions de croyance / Evaluation of the content of a color image by pixel-based measure and classificationthrough the theory of belief functions

Guettari, Nadjib 10 July 2017 (has links)
De nos jours, il est devenu de plus en plus simple pour qui que ce soit de prendre des photos avec des appareils photo numériques, de télécharger ces images sur l'ordinateur et d'utiliser différents logiciels de traitement d'image pour appliquer des modification sur ces images (compression, débruitage, transmission, etc.). Cependant, ces traitements entraînent des dégradations qui influent sur la qualité visuelle de l'image. De plus, avec la généralisation de l'internet et la croissance de la messagerie électronique, des logiciels sophistiqués de retouche d'images se sont démocratisés permettant de falsifier des images à des fins légitimes ou malveillantes pour des communications confidentielles ou secrètes. Dans ce contexte, la stéganographie constitue une méthode de choix pour dissimuler et transmettre de l'information.Dans ce manuscrit, nous avons abordé deux problèmes : l'évaluation de la qualité d'image et la détection d'une modification ou la présence d'informations cachées dans une image. L'objectif dans un premier temps est de développer une mesure sans référence permettant d'évaluer de manière automatique la qualité d'une image en corrélation avec l'appréciation visuelle humaine. Ensuite proposer un outil de stéganalyse permettant de détecter, avec la meilleure fiabilité possible, la présence d'informations cachées dans des images naturelles. Dans le cadre de cette thèse, l'enjeu est de prendre en compte l'imperfection des données manipulées provenant de différentes sources d'information avec différents degrés de précision. Dans ce contexte, afin de profiter entièrement de l'ensemble de ces informations, nous proposons d'utiliser la théorie des fonctions de croyance. Cette théorie permet de représenter les connaissances d'une manière relativement naturelle sous la forme d'une structure de croyances. Nous avons proposé une nouvelle mesure sans référence d'évaluation de la qualité d'image capable d'estimer la qualité des images dégradées avec de multiple types de distorsion. Cette approche appelée wms-EVreg2 est basée sur la fusion de différentes caractéristiques statistiques, extraites de l'image, en fonction de la fiabilité de chaque ensemble de caractéristiques estimée à travers la matrice de confusion. À partir des différentes expérimentations, nous avons constaté que wms-EVreg2 présente une bonne corrélation avec les scores de qualité subjectifs et fournit des performances de prédiction de qualité compétitives par rapport aux mesures avec référence.Pour le deuxième problème abordé, nous avons proposé un schéma de stéganalyse basé sur la théorie des fonctions de croyance construit sur des sous-espaces aléatoires des caractéristiques. La performance de la méthode proposée a été évaluée sur différents algorithmes de dissimulation dans le domaine de transformé JPEG ainsi que dans le domaine spatial. Ces tests expérimentaux ont montré l'efficacité de la méthode proposée dans certains cadres d'applications. Cependant, il reste de nombreuses configurations qui résident indétectables. / Nowadays it has become increasingly simpler for anyone to take pictures with digital cameras, to download these images to the computer and to use different image processing software to apply modifications on these images (Compression, denoising, transmission, etc.). However, these treatments lead to degradations which affect the visual quality of the image. In addition, with the widespread use of the Internet and the growth of electronic mail, sophisticated image-editing software has been democratised allowing to falsify images for legitimate or malicious purposes for confidential or secret communications. In this context, steganography is a method of choice for embedding and transmitting information.In this manuscript we discussed two issues : the image quality assessment and the detection of modification or the presence of hidden information in an image. The first objective is to develop a No-Reference measure allowing to automatically evaluate the quality of an image in correlation with the human visual appreciation. Then we propose a steganalysis scheme to detect, with the best possible reliability, the presence of information embedded in natural images. In this thesis, the challenge is to take into account the imperfection of the manipulated data coming from different sources of information with different degrees of precision. In this context, in order to take full advantage of all this information, we propose to use the theory of belief functions. This theory makes it possible to represent knowledge in a relatively natural way in the form of a belief structure.We proposed a No-reference image quality assessment measure, which is able to estimate the quality of the degraded images with multiple types of distortion. This approach, called wms-EVreg2, is based on the fusion of different statistical features, extracted from the image, depending on the reliability of each set of features estimated through the confusion matrix. From the various experiments, we found that wms-EVreg2 has a good correlation with subjective quality scores and provides competitive quality prediction performance compared to Full-reference image quality measures.For the second problem addressed, we proposed a steganalysis scheme based on the theory of belief functions constructed on random subspaces of the features. The performance of the proposed method was evaluated on different steganography algorithms in the JPEG transform domain as well as in the spatial domain. These experimental tests have shown the performance of the proposed method in some application frameworks. However, there are many configurations that reside undetectable.
6

Insertion adaptative en stéganographie : application aux images numériques dans le domaine spatial

Kouider, Sarra 17 December 2013 (has links) (PDF)
La stéganographie est l'art de la communication secrète. L'objectif est de dissimuler un message secret dans un médium anodin de sorte qu'il soit indétectable. De nos jours, avec la généralisation d'Internet et l'apparition des supports numériques (fichiers audio, vidéos ou images), plusieurs philosophies de conception de schéma stéganographique ont été proposées. Parmi les méthodes actuelles appliquées aux images numériques naturelles, nous trouvons les méthodes d'insertion adaptative, dont le principe repose sur la modification du médium de couverture avec une garantie d'avoir un certain niveau de sécurité. Ces méthodes représentent une véritable avancée en stéganographie.Dans ce manuscrit, après avoir rappelé les concepts récents de stéganographie adaptative, nous présentons une procédure automatique et complète pour l'insertion adaptative de données secrètes dans des images numériques naturelles. L'approche proposée est une " méta-méthode " basée " oracle ", appelée ASO (Adaptive Steganography by Oracle), qui permet de préserver à la fois la distribution de l'image de couverture et la distribution de la base d'images utilisée par l'émetteur. Notre approche permet d'obtenir des résultats nettement supérieurs aux méthodes actuelles de l'état de l'art, et est donc l'une, si ce n'est la meilleure approche du moment. Par ailleurs, nous définissons également un nouveau paradigme en stéganographie qui est la stéganographie par base, ainsi qu'une nouvelle mesure de sélection pour les images stéganographiées, permettant d'améliorer encore plus les performances de notre schéma d'insertion. Les différentes expérimentations, que nous avons effectuées sur des images réelles, ont confirmé la pertinence de cette nouvelle approche.
7

Oriented filters for feature extraction in digital Images : Application to corners detection, Contours evaluation and color Steganalysis / Filtres orientés pour l'extraction de primitives dans les images : Application à la détection de coins, l'évaluation de contours, et à la stéganalyse d'images couleur

Abdulrahman, Hasan 17 November 2017 (has links)
L’interprétation du contenu de l’image est un objectif très important dans le traitement de l’image et la vision par ordinateur. Par conséquent, plusieurs chercheurs y sont intéressés. Une image contient des informations multiples qui peuvent être étudiés, telles que la couleur, les formes, les arêtes, les angles, la taille et l’orientation. En outre, les contours contiennent les structures les plus importantes de l’image. Afin d’extraire les caractéristiques du contour d’un objet, nous devons détecter les bords de cet objet. La détection de bords est un point clé dans plusieurs applications, telles que :la restauration, l’amélioration de l’image, la stéganographie, le filigrane, la récupération, la reconnaissance et la compression de l’image, etc. Toutefois, l’évaluation de la performance de la méthode de détection de bords reste un grand défi. Les images numériques sont parfois modifiées par une procédure légale ou illégale afin d’envoyer des données secrètes ou spéciales. Afin d’être moins visibles, la plupart des méthodes stéganographiques modifient les valeurs de pixels dans les bords/textures de parties de l’image. Par conséquent, il est important de détecter la présence de données cachées dans les images numériques. Cette thèse est divisée principalement en deux parties.La première partie discute l’évaluation des méthodes de détection des bords du filtrage, des contours et des angles. En effet, cinq contributions sont présentées dans cette partie : d’abord, nous avons proposé un nouveau plan de surveillance normalisée de mesure de la qualité. En second lieu, nous avons proposé une nouvelle technique pour évaluer les méthodes de détection des bords de filtrage impliquant le score minimal des mesures considérées. En plus, nous avons construit une nouvelle vérité terrain de la carte de bords étiquetée d’une manière semi-automatique pour des images réelles.En troisième lieu, nous avons proposé une nouvelle mesure prenant en compte les distances de faux points positifs pour évaluer un détecteur de bords d’une manière objective. Enfin, nous avons proposé une nouvelle approche de détection de bords qui combine la dérivée directionnelle et l’homogénéité des grains. Notre approche proposée est plus stable et robuste au bruit que dix autres méthodes célèbres de détection. La seconde partie discute la stéganalyse de l’image en couleurs, basée sur l’apprentissage automatique (machine learning). En effet, trois contributions sont présentées dans cette partie : d’abord, nous avons proposé une nouvelle méthode de stéganalyse de l’image en couleurs, basée sur l’extraction de caractéristiques de couleurs à partir de corrélations entre les gradients de canaux rouge, vert et bleu. En fait, ces caractéristiques donnent le cosinus des angles entre les gradients. En second lieu, nous avons proposé une nouvelle méthode de stéganalyse de l’image en couleurs, basée sur des mesures géométriques obtenues par le sinus et le cosinus des angles de gradients entre tous les canaux de couleurs. Enfin, nous avons proposé une nouvelle méthode de stéganalyse de l’image en couleurs, basée sur une banque de filtres gaussiens orientables. Toutes les trois méthodes proposées présentent des résultats intéressants et prometteur en devançant l’état de l’art de la stéganalyse en couleurs. / Interpretation of image contents is very important objective in image processing and computer vision. Wherefore, it has received much attention of researchers. An image contains a lot of information which can be studied such as color, shapes, edges, corners, size, and orientation. Moreover, contours include the most important structures in the image. In order to extract features contour of an object, we must detect the edges of that object. Edge detection results, remains a key point and very important step in wide range of applications such as: image restoration, enhancement, steganography, watermarking, image retrieval, recognition, compression, and etc. An efficient boundary detection method should create a contour image containing edges at their correct locations with a minimum of misclassified pixels. However, the performance evaluationof the edge detection results is still a challenging problem. The digital images are sometimes modify by a legal or illegal data in order to send special or secret data. These changes modify slight coefficient values of the image. In order to be less visible, most of the steganography methods modify the pixel values in the edge/texture image areas. Therefore, it is important to detect the presence of hidden data in digital images. This thesis is divided mainly into two main parts. The first part, deals with filtering edge detection, contours evaluation and corners detection methods. More deeply, there are five contributions are presented in this part: first, proposed a new normalized supervised edge map quality measure. The strategy to normalize the evaluation enables to consider a score close to 0 as a good edge map, whereas a score 1 translates a poor segmentation. Second, proposed a new technique to evaluate filtering edge detection methods involving the minimum score of the considerate measures. Moreover, build a new ground truth edge map labelled in semi-automatic way in real images. Third, proposed a new measure takes into account the distances of false positive points to evaluate an edge detector in an objective way. Finally, proposed a new approach for corner detection based on the combination of directional derivative and homogeneity kernels. The proposed approach remains more stable and robust to noise than ten famous corner detection methods. The second part, deals with color image steganalysis, based on a machine learning classification. More deeply, there are three contributionsare presented in this part: first, proposed a new color image steganalysis method based on extract color features from correlations between the gradients of red, green and blue channels. Since these features give the cosine of angles between gradients. Second, proposed a new color steganalysis method based on geometric measures obtained by the sine and cosine of gradient angles between all the color channels. Finally, proposed a new approach for color image steganalysisbased on steerable Gaussian filters Bank.All the three proposed methods in this part, provide interesting and promising results by outperforming the state-of-art color image steganalysis.
8

Developing fast machine learning techniques with applications to steganalysis problems

Miche, Yoan 02 November 2010 (has links) (PDF)
Depuis que les Hommes communiquent, le besoin de dissimuler tout ou partie de la communication existe. On peut citer au moins deux formes de dissimulation d'un message au sein d'une communication: Dans le premier cas, le message à envoyer peut lui même être modifié, de telle sorte que seul le destinataire puisse le décoder. La cryptographie s'emploie par exemple à cette tâche. Une autre forme est celle de la stéganographie, qui vise à dissimuler le message au sein d'un document. Et de même que pour la cryptographie dont le pendant est la cryptanalyse visant à décrypter le message, la stéganalyse est à l'opposé de la stéganographie et se charge de détecter l'existence d'un message. Le terme de stéganalyse peut également désigner l'importante classe de problèmes liés à la détection de l'existence du message mais aussi à l'estimation de sa taille (stéganalyse quantitative) ou encore de son contenu. Dans cette thèse, l'accent est tout d'abord mis sur le problème classique de stéganalyse (détection de la présence du message). Une méthodologie permettant d'obtenir des résultats statistiquement fiables dans ce contexte est proposée. Il sagit tout d'abord d'estimer le nombre d'échantillons (ici des images) suffisant à l'obtention de résultats pertinents, puis de réduire la dimensionalité du problème par une approche basée sur la sélection de variables. Dans le contexte de la stéganalyse, la plupart des variables obtenues peuvent être interprétées physiquement, ce qui permet une interprétation de la sélection de variables obtenue: les variables sélectionnées en premier réagissent vraisemblablement de façon importante aux changements causés par la présence du message. Leur analyse peut permettre de comprendre le fonctionnement et les faiblesses de l'algorithme de stéganographie utilisé, par exemple. Cette méthodologie peut s'avérer complexe en termes de calculs et donc nécessiter des temps d'éxecution importants. Pour pallier à ce problème, un nouveau modèle pour le "Machine Learning" est proposé, l'OP-ELM. L'OPELM est constitué d'un Réseau de Neurones au sein duquel des projections aléatoires sont utilisées. Les neurones sont ensuite classés par pertinence vis à vis du problème, et seuls les plus pertinents sont conservés. Cette structure de modèle parvient à obtenir des performances similaires à celles de l'état de l'art dans le domaine du "Machine Learning". Enfin, le modèle OP-ELM est utilisé dans le cadre de la stéganalyse quantitative, cette fois (l'estimation de la taille du message). Une approche nouvelle sur ce problème est utilisée, faisant appel à une technique de ré-insertion d'un message au sein d'une image considérée comme suspecte. En répétant ce processus de ré-insertion un certain nombre de fois, et pour des messages connus de tailles différentes, il est possible d'estimer la taille du message original utilisé par l'expéditeur. De plus, par l'utilisation de la largeur de l'intervalle de confiance obtenu sur la taille du message original, une mesure de la difficulté intrinsèque à l'image est présentée. Ceci permet d'estimer la fiabilité de la prédiction obtenue pour la taille du message original.
9

Sécurité de l’information par stéganographie basée sur les séquences chaotiques / Information security by steganography based on chaotic sequences

Battikh, Dalia 18 May 2015 (has links)
La stéganographie est l’art de la dissimulation de l’information secrète dans un médium donné (cover) de sorte que le médium résultant (stégo) soit quasiment identique au médium cover. De nos jours, avec la mondialisation des échanges (Internet, messagerie et commerce électronique), s’appuyant sur des médiums divers (son, image, vidéo), la stéganographie moderne a pris de l’ampleur. Dans ce manuscrit, nous avons étudié les méthodes de stéganographie LSB adaptatives, dans les domaines spatial et fréquentiel (DCT, et DWT), permettant de cacher le maximum d’information utile dans une image cover, de sorte que l’existence du message secret dans l’image stégo soit imperceptible et pratiquement indétectable. La sécurité du contenu du message, dans le cas de sa détection par un adversaire, n’est pas vraiment assurée par les méthodes proposées dans la littérature. Afin de résoudre cette question, nous avons adapté et implémenté deux méthodes (connues) de stéganographie LSB adaptatives, en ajoutant un système chaotique robuste permettant une insertion quasi-chaotique des bits du message secret. Le système chaotique proposé consiste en un générateur de séquences chaotiques robustes fournissant les clés dynamiques d’une carte Cat 2-D chaotique modifiée. La stéganalyse universelle (classification) des méthodes de stéganographie développées est étudiée. A ce sujet, nous avons utilisé l’analyse discriminante linéaire de Fisher comme classifieur des vecteurs caractéristiques de Farid, Shi et Wang. Ce choix est basé sur la large variété de vecteurs caractéristiques testés qui fournissent une information sur les propriétés de l’image avant et après l’insertion du message. Une analyse des performances des trois méthodes de stéganalyse développées, appliquées sur des images stégo produites par les deux méthodes de stéganographie LSB adaptatives proposées, est réalisée. L’évaluation des résultats de la classification est réalisée par les paramètres: sensibilité, spécificité, précision et coefficient Kappa. / Steganography is the art of the dissimulation of a secret message in a cover medium such that the resultant medium (stego) is almost identical to the cover medium. Nowadays, with the globalization of the exchanges (Internet, messaging and e-commerce), using diverse mediums (sound, embellish with images, video), modern steganography is widely expanded. In this manuscript, we studied adaptive LSB methods of stéganography in spatial domain and frequency domain (DCT, and DWT), allowing of hiding the maximum of useful information in a cover image, such that the existence of the secret message in the stégo image is imperceptible and practically undetectable. Security of the message contents, in the case of its detection by an opponent, is not really insured by the methods proposed in the literature. To solve this question, we adapted and implemented two (known) methods of adaptive stéganographie LSB, by adding a strong chaotic system allowing a quasi-chaotic insertion of the bits of the secret message. The proposed chaotic system consists of a generator of strong chaotic sequences, supplying the dynamic keys of a modified chaotic 2D Cat map. Universal steganalysis (classification) of the developed methods of stéganography, is studied. On this question, we used the linear discriminating analysis of Fisher as classifier of the characteristic vectors of Farid, Shi and Wang. This choice is based on the wide variety of tested characteristic vectors that give an information about the properties of the image before and after message insertion. An analysis of the performances of three developed methods of steganalysis, applied to the produced stego images by the proposed adaptive methods of stéganography, is realized. Performance evaluation of the classification is realized by using the parameters: sensibility, specificity, precision and coefficient Kappa.
10

Sécurisation de la communication parlée par une techhnique stéganographique / A technique for secure speech communication using steganography

Rekik, Siwar 16 April 2012 (has links)
Une des préoccupations dans le domaine des communications sécurisées est le concept de sécurité de l'information. Aujourd’hui, la réalité a encore prouvé que la communication entre deux parties sur de longues distances a toujours été sujet au risque d'interception. Devant ces contraintes, de nombreux défis et opportunités s’ouvrent pour l'innovation. Afin de pouvoir fournir une communication sécurisée, cela a conduit les chercheurs à développer plusieurs schémas de stéganographie. La stéganographie est l’art de dissimuler un message de manière secrète dans un support anodin. L’objectif de base de la stéganographie est de permettre une communication secrète sans que personne ne puisse soupçonner son existence, le message secret est dissimulé dans un autre appelé medium de couverture qui peut être image, video, texte, audio,…. Cette propriété a motivé les chercheurs à travailler sur ce nouveau champ d’étude dans le but d’élaborer des systèmes de communication secrète résistante à tout type d’attaques. Cependant, de nombreuses techniques ont été développées pour dissimuler un message secret dans le but d’assurer une communication sécurisée. Les contributions majeures de cette thèse sont en premier lieu, de présenter une nouvelle méthode de stéganographie permettant la dissimulation d’un message secret dans un signal de parole. La dissimulation c’est le processus de cacher l’information secrète de façon à la rendre imperceptible pour une partie tierce, sans même pas soupçonner son existence. Cependant, certaines approches ont été étudiées pour aboutir à une méthode de stéganogaraphie robuste. En partant de ce contexte, on s’est intéressé à développer un système de stéganographie capable d’une part de dissimuler la quantité la plus élevée de paramètre tout en gardant la perceptibilité du signal de la parole. D’autre part nous avons opté pour la conception d’un algorithme de stéganographie assez complexe afin d’assurer l’impossibilité d’extraction de l’information secrète dans le cas ou son existence été détecter. En effet, on peut également garantir la robustesse de notre technique de stéganographie à l’aptitude de préservation du message secret face aux tentatives de détection des systèmes de stéganalyse. Notre technique de dissimulation tire son efficacité de l’utilisation de caractéristiques spécifiques aux signaux de parole et àl’imperfection du système auditif humain. Des évaluations comparatives sur des critères objectifs et subjectifs de qualité sont présentées pour plusieurs types de signaux de parole. Les résultats ont révélé l'efficacité du système développé puisque la technique de dissimulation proposée garantit l’imperceptibilité du message secret voire le soupçon de son existence. Dans la suite expérimentale et dans le même cadre de ce travail, la principale application visée par la thèse concerne la transmission de parole sécurisée par un algorithme de stéganographie. Dans ce but il s’est avéré primordial d’utiliser une des techniques de codage afin de tester la robustesse de notre algorithme stéganographique face au processus de codage et de décodage. Les résultats obtenus montrent la possibilité de reconstruction du signal original (contenant des informations secrètes) après codage. Enfin une évaluation de la robustesse de notre technique de stéganographie vis à vis des attaques est faite de façon à optimiser la technique afin d'augmenter le taux de sécurisation. Devant cette nécessité nous avons proposé une nouvelle technique de stéganalyse basée sur les réseaux de neurones AR-TDNN. La technique présentée ici ne permet pas d'extraire l'éventuel message caché, mais simplement de mettre en évidence sa présence. / One of the concerns in the field of secure communication is the concept of information security. Today’s reality is still showing that communication between two parties over long distances has always been subject to interception. Providing secure communication has driven researchers to develop several cryptography schemes. Cryptography methods achieve security in order to make the information unintelligible to guarantee exclusive access for authenticated recipients. Cryptography consists of making the signal look garbled to unauthorized people. Thus, cryptography indicates the existence of a cryptographic communication in progress, which makes eavesdroppers suspect the existence of valuable data. They are thus incited to intercept the transmitted message and to attempt to decipher the secret information. This may be seen as weakness in cryptography schemes. In contrast to cryptography, steganography allows secret communication by camouflaging the secret signal in another signal (named the cover signal), to avoid suspicion. This quality motivated the researchers to work on this burning field to develop schemes ensuring better resistance to hostile attackers. The word steganography is derived from two Greek words: Stego (means cover) and graphy (means writing). The two combined words constitute steganography, which means covert writing, is the art of hiding written communications. Several steganography techniques were used to send message secretly during wars through the territories of enemies. The major contributions of this thesis are the following ones. We propose a new method to secure speech communication using the Discrete Wavelet Transforms (DWT) and the Fast Fourier Transform (FFT). Our method exploits first the high frequencies using a DWT, then exploits the low-pass spectral properties of the speech magnitude spectrum to hide another speech signal in the low-amplitude high-frequencies region of the cover speech signal. The proposed method allows hiding a large amount of secret information while rendering the steganalysis more complex. Comparative evaluation based on objective and subjective criteria is introduced for original speech signal, stego-signal and reconstructed secret speech signal after the hiding process. Experimental simulations on both female and male speakers revealed that our approach is capable of producing a stego speech that is indistinguishable from the cover speech. The receiver is still able to recover an intelligible copy of the secret speech message. We used an LPC10 coder to test the effect of the coding techniques on the stego-speech signals. Experimental results prove the efficiency of the used coding technique since intelligibility of the stego-speech is maintained after the encoding and decoding processes. We also advocate a new steganalysis technique to ensure the robustness of our steganography method. The proposed classifier is called Autoregressive time delay neural network (ARTDNN). The purpose of this steganalysis system is to identify the presence or not of embedded information, and does not actually attempt to extract or decode the hidden data. The low detecting rate prove the robustness of our hiding technique.

Page generated in 0.0417 seconds