Spelling suggestions: "subject:"captable"" "subject:"cantable""
351 |
Sex differences in the utilization of essential and non-essential amino acids in LepidopteraLevin, Eran, McCue, Marshall D., Davidowitz, Goggy 01 August 2017 (has links)
The different reproductive strategies of males and females underlie differences in behavior that may also lead to differences in nutrient use between the two sexes. We studied sex differences in the utilization of two essential amino acids (EAAs) and one non-essential amino acid (NEAA) by the Carolina sphinx moth (Manduca sexta). On day one post-eclosion from the pupae, adult male moths oxidized greater amounts of larva-derived AAs than females, and more nectar-derived AAs after feeding. After 4 days of starvation, the opposite pattern was observed: adult females oxidized more larva- derived AAs than males. Adult males allocated comparatively small amounts of nectar-derived AAs to their first spermatophore, but this allocation increased substantially in the second and third spermatophores. Males allocated significantly more adult-derived AAs to their flight muscle than females. These outcomes indicate that adult male and female moths employ different strategies for allocation and oxidation of dietary AAs.
|
352 |
Water-use efficiency and productivity in native Canadian populations of Populus trichocarpa and Populus balsamiferaPointeau, Virginie M. 05 1900 (has links)
Afforestation and reforestation programs utilizing available fields for biofuel production, carbon sequestration, and other uses linked to climate change are looking to tree physiologists to identify species and genotypes best-suited to their purposes. The ideal poplar genotype for use in Canadian programs would be drought-resistant, cold-climate adapted, and fast-growing, thus requiring an understanding of links between a variety of physiological traits linked to growth and productivity. This study examined the basis for variations in water-use efficiency within four selected populations of Populus trichocarpa and Populus balsamifera (2 provenances each). Each species included both a northern and a southern provenance. Correlations between water-use efficiency, nitrogen-use efficiency, ¹³C/¹²C isotope ratio, stomatal conductance, and overall productivity were evaluated. Gas exchange variables measured included net photosynthesis, transpiration rate, stomatal conductance, and intercellular CO₂ content. Water-use efficiency and ¹³C content across all genotypes were highly correlated. Results suggested that variation in water-use efficiency was primarily related to variation in stomatal conductance across all genotypes. Whereas differences in net photosynthesis in this study were not significant between species, P. balsamifera did reveal a higher average stem volume overall. Although variation in stomatal conductance was the major determinant of differences in water-use efficiency, positive correlations were found between ¹³C isotope abundance and net photosynthesis in both P. balsamifera provenances. In this regard, results for the northern P. balsamifera provenance are the most consistent across all gas-exchange and growth trait correlations, in terms of meeting expectations for sink-driven water-use efficiency. The findings in this study suggest the possibility of identifying poplar genotypes with an absence of trade-off between water-use efficiency and nitrogen-use efficiency, notably among genotypes from the northern P. balsamifera provenance, near Gillam. / Forestry, Faculty of / Graduate
|
353 |
Improvements in Obreshkov-based High-Order Circuit Simulation MethodLin, Yaoyao January 2015 (has links)
The transient time-domain simulation, of the circuit response, is a fundamental component in the Computer-Aided Design tools of all integrated circuit and systems. It is typically desirable that a method adopted in the transient circuit simulator be of high- order and numerically stable. The two requirements, however, proved to be in conflict with each other, especially in the larger class of methods that were used in traditional circuit simulators. Recent work based on utilizing the Obreshkov formula has proved that it is possible to combine the high order with the numerical stability.
The objective of this thesis is to show how the present implementation of the Obreshkov- based method can be improved and generalized to handle different types of circuits. The first aspect of improvement targets the computation of the high-order derivatives re- quired by the Obreshkov formula. The second aspect of improvement, presented in the thesis, develops a generalized formulation that takes into account the presence of non- linear memory elements, whose nonlinearity is based on a capacitive or inductive-based nonlinear model.
|
354 |
Experimental Study of the Growth and Stable Water Isotopes of Ice Formed by Vapour Deposition in Cold EnvironmentsBrasseur, Philippe January 2016 (has links)
Ice formed by water vapour deposition has been identified in different terrestrial environments: 1) in the atmosphere; 2) at the ground’s surface; 3) in caves; 4) in seasonally frozen ground; and 5) in perennially frozen ground (permafrost). Thus far, ground ice formed by diffusion and deposition of vapour in soils (types 4 and 5) has rarely been studied in a natural setting and remains one of the most poorly described ice types on Earth. This thesis focuses on the dynamics of deposition and sublimation of atmospheric water vapour into permafrost and the isotopic signature (D/H and 18O/16O) of the emplaced ground ice under different experimental conditions. Ground ice was produced in sediments with different thermo-physical characteristics (glass beads, JSC Mars-1 simulant). After a two-month growth period, the higher porosity sediments (JSC) had more than 7x the gravimetric water content than the lower porosity soil. Ground ice profiles had a distinct concave downwards shape due to the decrease in saturation vapour pressure with depth. Results also indicate that vapour deposited ground ice has a distinct δD-δ18O composition that plots near regression slope value of 8. Pore water isotopes plot below the global meteoric water line (GMWL) when the source of moisture is directly on top of the sediments. If an air gap is introduced between the source of moisture and the sediments, the pore water isotopes shift above the GMWL due to re-sublimation at the ground surface. Overall, this thesis addressed some fundamental knowledge gaps required to better understand the growth and isotopic evolution of ground ice emplaced by vapour deposition.
|
355 |
Insights into the Challenges of Modeling the Atmospheric Boundary LayerTastula, Esa-Matti 16 September 2015 (has links)
This work approaches the topic of modeling the atmospheric boundary layer in four research projects, which are summarized below.
i) The diurnal cycles of near-surface meteorological parameters over Antarctic sea ice in six widely used atmospheric reanalyses were validated against observations from Ice Station Weddell. The station drifted from February through May 1992 and provided the most extensive set of meteorological observations ever collected in the Antarctic sea ice zone. For the radiative and turbulent surface fluxes, both the amplitude and shape of the diurnal cycles varied considerably among different reanalyses. Near-surface temperature, specific humidity, and wind speed in the reanalyses all featured small diurnal ranges, which, in most cases, fell within the uncertainties of the observed cycle. A skill score approach revealed the superiority of the ERA-Interim reanalysis in reproducing the observed diurnal cycles. An explanation for the shortcomings in the reanalyses is their failure to capture the diurnal cycle in cloud cover fraction, which leads to errors in other quantities as well. Apart from the diurnal cycles, NCEP-CFSR gave the best error statistics.
ii) The accuracy of prediction of stable atmospheric boundary layers depends on the parameterization of the surface layer which is usually derived from the Monin-Obukhov similarity theory. In this study, several surface-layer models in the format of velocity and potential temperature Deacon numbers were compared to observations from CASES-99, Cardington, and Halley datasets. The comparisons were hindered by a large amount of scatter within and among datasets. Tests utilizing R2 demonstrated that the Quasi-Normal Scale Elimination (QNSE) theory exhibits the best overall performance. Further proof of this was provided by 1D simulations with the Weather Research and Forecasting (WRF) model.
iii) The increasing number of physics parameterization schemes adopted in numerical weather forecasting models has resulted in a proliferation of inter-comparison studies in recent years. Many of these studies concentrated on determining which parameterization yields results closest to observations rather than analyzing the reasons underlying the differences. In this work, the performance of two 1.5-order boundary layer parameterizations was studied, the QNSE and Mellor-Yamada-Janjić (MYJ) schemes, in the Weather Research and Forecasting (WRF) model. The objectives were to isolate the effect of stability functions on the near-surface values and vertical profiles of virtual temperature, mixing ratio and wind speed. The results demonstrate that the QNSE stability functions yield better error statistics for 2-m virtual temperature but higher up the errors related to QNSE are slightly larger for virtual temperature and mixing ratio. A surprising finding is the sensitivity of the model results to the choice of the turbulent Prandtl number for neutral stratification (Prt0): in the Monin-Obukhov similarity function for heat, the choice of Prt0 is sometimes more important than the functional form of the similarity function itself. There is a stability-related dependence to this sensitivity: with increasing near-surface stability, the relative importance of the functional form increases. In near-neutral conditions, QNSE exhibits too strong vertical mixing attributed to the applied turbulent kinetic energy subroutine and the stability functions including the effect of Prt0.
iv) In recent years, many eddy-diffusivity mass flux (EDMF) planetary boundary layer (PBL) parameterizations have been introduced. Yet, most validations are based on idealized setups and/or single column models. To address this gap, this study focused on the effect the mass flux part has on the performance in the QNSE-EDMF PBL scheme in the WRF model by comparing the results to observations from the CASES-97 field campaign. In addition, two refined versions, one introducing the parameterized clouds to the WRF radiation scheme, and the second adding a different entrainment formulation, were evaluated. The introduction of mass flux reduced errors in the average moisture profile but virtual temperature and wind speed profiles did not change as much. The turbulent flux profiles for modeled virtual potential temperature were little affected, with consistent reasonable agreement with observations, if one allows for biases in the observed data and modeled surface fluxes. However, the water vapor flux divergences from QNSE tend to be more negative than observed, while including the mass flux part tends to make the divergences more positive, the latter at least partially due to deeper model PBLs resulting from excessive model surface virtual temperature fluxes. Further, both virtual potential temperature and water vapor flux profiles display spurious spikes attributed to the way the non-local and local terms interact in the model. The influence of the mass flux schemes extends to 60 – 100-km scale circulation features, which were greatly modified by both the inclusion of mass flux and the new entrainment formulation. Adding mass flux based clouds to the radiation calculation improved the time and space averaged modeled incoming shortwave flux. The choice of the representation for entrainment/detrainment often affected the results to the same extent as adding mass flux did.
|
356 |
Relative Role of Dispersal Dynamics and Competition in Niche BreadthAbbey-Lee, Robin N 12 July 2012 (has links)
Among-individual variation in resource use is pervasive and may have ecosystem-wide effects. This variation between individuals can affect population niche breadth. My study determined if niche breadth was best explained by dispersal of individuals from locations with different prey resources driven by ecosystem level disturbance regimes or competition among individuals inhabiting a site, resulting in dietary partitioning. I used structural equation modeling to examine the direct and indirect effects of several environmental variables spanning gradients of disturbance, competition strength, and food availability on niche breadth of the Eastern Mosquitofish (Gambusia holbrooki). I evaluated two complementary models 1) allowing for only direct effects of disturbance on niche breadth and 2) limiting effects of disturbance on niche breadth to indirect effects via food availability and competitor densities. The partitioning hypothesis excluding direct effects of disturbance on niche breadth was best supported by my data.
|
357 |
Geographic Provenancing of Unprocessed Cotton Using Elemental Analysis and Stable Isotope RatiosSchenk, Emily R 01 January 2012 (has links)
Cotton is the most abundant natural fiber in the world. Many countries are involved in the growing, importation, exportation and production of this commodity. Paper documentation claiming geographic origin is the current method employed at U.S. ports for identifying cotton sources and enforcing tariffs. Because customs documentation can be easily falsified, it is necessary to develop a robust method for authenticating or refuting the source of the cotton commodities. This work presents, for the first time, a comprehensive approach to the chemical characterization of unprocessed cotton in order to provide an independent tool to establish geographic origin. Elemental and stable isotope ratio analysis of unprocessed cotton provides a means to increase the ability to distinguish cotton in addition to any physical and morphological examinations that could be, and are currently performed. Elemental analysis has been conducted using LA-ICP-MS, LA-ICP-OES and LIBS in order to offer a direct comparison of the analytical performance of each technique and determine the utility of each technique for this purpose.
Multivariate predictive modeling approaches are used to determine the potential of elemental and stable isotopic information to aide in the geographic provenancing of unprocessed cotton of both domestic and foreign origin. These approaches assess the stability of the profiles to temporal and spatial variation to determine the feasibility of this application.
This dissertation also evaluates plasma conditions and ablation processes so as to improve the quality of analytical measurements made using atomic emission spectroscopy techniques. These interactions, in LIBS particularly, are assessed to determine any potential simplification of the instrumental design and method development phases. This is accomplished through the analysis of several matrices representing different physical substrates to determine the potential of adopting universal LIBS parameters for 532 nm and 1064 nm LIBS for some important operating parameters. A novel approach to evaluate both ablation processes and plasma conditions using a single measurement was developed and utilized to determine the “useful ablation efficiency” for different materials. The work presented here demonstrates the potential for an a priori prediction of some probable laser parameters important in analytical LIBS measurement.
|
358 |
Spatial and Temporal Mapping of Distributed Precipitation, Surface and Groundwater Stable Isotopes Enables Insights into Hydrologic Processes Operating at a Catchment ScaleCole, Alison 29 October 2019 (has links)
Isotopic analyses of d18O and d2H of water through the hydrologic cycle have allowed hydrologists to make better interpretations related to climate and relationships between precipitation, surface water, and groundwater. In this study 394 precipitation samples 1917 surface water samples and 1405 groundwater samples across Massachusetts was used to create an isoscape for each respective water. All samples have been collected by volunteers throughout Massachusetts. A state meteoric water line: d2H = 7.7*d18O + 9.8, surface water line: d2H = 5.7*d18O – 4.2, and groundwater line: d2H = 6.5*d18O + 2.9 was created for the state of Massachusetts. The d18O isoscape for each of the above-mentioned waters shows an isotopic separation along an east-west topographic gradient where isotopes were enriched in the eastern portion of Massachusetts and depleted in the western portion of Massachusetts. Precipitation, surface water, and groundwater show unique isotopic variability. The isotopic variability of precipitation is primarily due to seasonality, moisture source and differences in topography across Massachusetts. The d18O and d2H isotopic variability of surface water is due to a biasing of precipitation as well an enrichment due to an open water system as the surface water dataset correlates with surface water type and precipitation isotopic values. The d18O and d2H isotopic variability of groundwater is due to the dampening of surface water and precipitation because of hydrogeologic processes and the biasing of surface waters that have gone through open water isotopic variability.
|
359 |
Trophic ecology of Japanese eels (Anguilla japonica) in river habitats with implications for the conservation of an endangered species / 河川に生息する二ホンウナギ(Anguilla japonica)の食物網解析による保全生態学的研究Alisa, Kutzer 23 March 2021 (has links)
京都大学 / 新制・課程博士 / 博士(地球環境学) / 甲第23351号 / 地環博第209号 / 新制||地環||40(附属図書館) / 京都大学大学院地球環境学舎地球環境学専攻 / (主査)教授 德地 直子, 教授 柴田 昌三, 准教授 西川 完途 / 学位規則第4条第1項該当 / Doctor of Global Environmental Studies / Kyoto University / DGAM
|
360 |
The stratigraphic and structural controls on copper-gold mineralization at Cassenha hill prospect, within the Archean to Paleoproterozoic Angolan shield, Congo craton, South Western Angolavaz Sidre, Stelvio 29 September 2021 (has links)
The Cassenha Hill copper-gold prospect is situated in the Catabola area, Huambo Province, southwestern Angola. Geologically, the prospect is part of the Angolan Central Eburnean Zone (CEZ) and consists of Paleoproterozoic metasedimentary rock sequences which have been intruded by Eburnean granitoids at ± 2.1 Ga. The prospect itself comprises an area of 180 Km2 and has been intermittently explored since 2005 by Rift Valley Resources (RVR) and its associates. The Cassenha Hill prospect is characterized by the occurrence of partially altered and highly oxidized metasedimentary rocks (meta-mudstone, meta-siltstone, carbonate-rich rock, meta-sandstone, breccia, and quartzite), and altered isolated granitoids. This study represents the first detailed study of the prospect and aims to shed light on the characteristics of the various rock types (i.e., host and barren rocks), their source/provenance, styles of alteration, and the origin and/or type of the fluid responsible for the mineralization. Techniques applied include borehole core logging, petrography, whole-rock geochemistry (XRF and ICP-MS), and stable isotope geochemistry on samples collected on the surface and from exploration boreholes drilled as part of RVR exploration program. Overall, the petrographic and geochemical studies undertaken in the rocks of the Cassenha Hill prospect indicate the following: (1) The rocks are moderately to strongly fractured; (2) The rocks have experienced weak to moderate chemical weathering; (3) The rocks are compositionally immature and originated from felsic provenance; (4) The rocks are sulfur-poor, and lacking in sulfide minerals (5) The rocks are enriched in LREE and LILE elements and depleted in HREE and HFSE elements; (6) The mineralization is associated with chloritization alteration and predominantly occurs within and/or at the edges of quartz/chlorite-rich veins/fractures and is not restricted to any rock type. Two ore stages could be identified, namely, hypogene ore (stage I) consisting of pyrite ± chalcopyrite ± other copper sulfides, and supergene ore (stage II) consisting of malachite ± azurite ± chrysocolla, which represents the prevalent mineralization at the prospect. The δ 18O value of quartz veins range from +12.81 to +13.53‰, while the δD of chlorite minerals range from -51 to -45‰. Therefore, assuming fluid-rock interaction took place at ≈ 350oC, due to the presence of quartz, the fluid had δ 18OH20 values of about +8‰, which are typical of magmatic waters. On the other hand, at a temperature of ≈ 350oC, and with the difference between chlorite and water being -33.5‰, such fluids would have had δDH20 values of about -20‰ (δ 18OH20= -4‰), which are typical of meteoric waters. Although the various mineral phases have yielded different isotopic signatures, this study suggests that water is ultimately of meteoric origin but exchanged with hydrogen-poor magmatic rock, thus maintaining the meteoric signature. The continuous influx of meteoric waters within the fracture system led to the development of copper oxides such as malachite, azurite and chrysocolla, which possibly originated from the insitu oxidation of the hypogene sulfides. This signature, together with other field, petrographic and geochemical observations allows one to, tentatively, suggest that the Cassenha Hill prospect represents an extension of a polymetallic vein-type of porphyry Cu deposit that has been subjected to supergene processes at the weathering profile.
|
Page generated in 0.037 seconds