• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Big Data analytics for the forest industry : A proof-of-conceptbuilt on cloud technologies

Sellén, David January 2016 (has links)
Large amounts of data in various forms are generated at a fast pace in today´s society. This is commonly referred to as “Big Data”. Making use of Big Data has been increasingly important for both business and in research. The forest industry is generating big amounts of data during the different processes of forest harvesting. In Sweden, forest infor-mation is sent to SDC, the information hub for the Swedish forest industry. In 2014, SDC received reports on 75.5 million m3fub from harvester and forwarder machines. These machines use a global stand-ard called StanForD 2010 for communication and to create reports about harvested stems. The arrival of scalable cloud technologies that com-bines Big Data with machine learning makes it interesting to develop an application to analyze the large amounts of data produced by the forest industry. In this study, a proof-of-concept has been implemented to be able to analyze harvest production reports from the StanForD 2010 standard. The system consist of a back-end and front-end application and is built using cloud technologies such as Apache Spark and Ha-doop. System tests have proven that the concept is able to successfully handle storage, processing and machine learning on gigabytes of HPR files. It is capable of extracting information from raw HPR data into datasets and support a machine learning pipeline with pre-processing and K-Means clustering. The proof-of-concept has provided a code base for further development of a system that could be used to find valuable knowledge for the forest industry.
2

Stamkodad naturvårdskartläggning : Hur påverkar registreringen utförandet? / Stem coded nature conservation measuring : How does data collection affect practice?

Markström, Mikael January 2024 (has links)
Denna rapport undersökte huruvida akten att registrera naturvårdsinsatser vid föryngringsavverkning har en påverkan på resultatet. Med politiska och miljömässiga påtryckningar som i hög grad påverkar skogsbranschen har behovet av kvalitetssäkrad datarapportering ökat. Teknologiska framsteg har underlättat datainsamling och möjligheter till uppföljning av utförda åtgärder. Baserat på 62 föryngringsavverkningar utförda mellan åren 2021 och 2023 samlades data in under utförandefasen via semiautomatiska system kopplade till skördaren och stickprovskontroller i kvalitetsuppföljningen.Analysen omfattade hänsynskategorier knutna till lagkrav och PEFC-certifiering, tillsammans med stamkodsdata och analys av drivningsmönster. Resultaten indikerar en positiv korrelation mellan detaljerad datainsamling av naturvårdsåtgärder och högre kvalitet på naturvårdsresultaten. Detta visar behovet av standardiserade metoder, inklusive implementeringsinstruktioner och återkopplingsmekanismer, för att förbättra kvaliteten och trovärdigheten avseende både miljömässiga och produktionsmässiga mål.

Page generated in 0.0177 seconds