• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 146
  • 38
  • 31
  • 21
  • 20
  • 15
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 3
  • Tagged with
  • 348
  • 39
  • 37
  • 31
  • 29
  • 22
  • 20
  • 18
  • 16
  • 15
  • 15
  • 14
  • 14
  • 14
  • 14
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Immediate Effects of Cryotherapy on Static and Dynamic Balance

Douglas, Matthew, Bivens, Serena, Pesterfield, Jennifer, Clemson, Nathan, Castle, Whitney, Sole, Gisela, Wassinger, Craig A. 01 February 2013 (has links)
PURPOSE/BACKGROUND: Cryotherapy is commonly used in physical therapy with many known benefits; however several investigations have reported decreased functional performance following therapeutic application thereof. The purpose of this study was to determine the effect of cryotherapy applied to the ankle on static and dynamic standing balance. It was hypothesized that balance would be decreased after cryotherapy application. METHODS: Twenty individuals (aged 18 to 40 years) participated in this research project. Each participant was tested under two conditions: an experimental condition where subjects received ice water immersion of the foot and ankle for 15 minutes immediately before balance testing and a control condition completed at room temperature. A Biodex® Balance System was used to quantify balance using anterior/posterior (AP), medial/lateral (ML), and overall balance indices. Paired t-tests were used to compare the balance indices for the two conditions with alpha set at 0.05 a priori. Effect size was also calculated to account for the multiple comparisons made. RESULTS: The static balance indices did not display statistically significant differences between the post-cryotherapy and the control conditions with low effect sizes. Dynamic ML indices significantly increased following the cryotherapy application compared to the control exhibiting a moderate effect size indicating decreased balance following cryotherapy application. No differences were noted between experimental and control conditions for the dynamic AP or overall balance indices while a small effect size was noted for both. CONCLUSIONS: The results suggest that cryotherapy to the ankle has a negative effect on the ML component of dynamic balance following ice water immersion. CLINICAL RELEVANCE: Immediate return to play following cryotherapy application is cautioned given the decreased dynamic ML balance and potential for increased injury risk. LEVEL OF EVIDENCE: 3b Case-control study.
32

Physicians' role in patient ergonomics: a pilot study

Mula, Allison Kate 21 February 2019 (has links)
With the ever-increasing rate of the integration of technology, and office workers making up the largest single sector of occupations, many workers are spending an increasingly large portion of their work time in the prolonged sitting or standing position and while on computer-based systems. Evidence-based research suggests that increased sedentary time is associated with diabetes, hypertension and other mortality causing diseases such as cardiovascular disease. There is a lack of occupational medicine considerations, specifically ergonomics, incorporated into the patient plan of care in the primary care setting. This is likely due to the decreased number of physicians specializing in occupational medicine (OM), and the lack of OM education in medical school curriculum. The current time constraints of the medical system may make the integration of additional screening seem unreasonable. With the introduction of occupational therapy as a contributing member of the primary care team, the burden of ergonomic training and education for at-risk patients can be reduced. Through participation in the Physicians’ Role in Patient Ergonomics workshop, a 20-minute online video aimed at explaining the connection between occupational risks and common health issues seen in the primary care setting, physicians can learn about the implications of occupational risks on patient health, and how to utilize brief screening questions and decision trees to efficiently determine which patients may benefit from ergonomic education and training.
33

Stationary long waves in a bounded pressure co-ordinate model

Kirkwood, Edward John. January 1976 (has links)
No description available.
34

Resonance of stationary waves in a model atmosphere

Mitchell, Herschel L. January 1982 (has links)
No description available.
35

The Design of Three-Dimensional Multicellular Liver Models Using Detachable, Nanoscale Polyelectrolyte Multilayers

Larkin, Adam Lyston 25 September 2012 (has links)
We report the design and assembly of three-dimensional (3D) multi-cellular liver models comprised of primary rat hepatocytes, liver sinusoidal endothelial cells (LSECs), and Kupffer cells (KCs). LSECs and KCs in the liver model were separated from hepatocytes by a nanoscale, detachable, optically transparent chitosan and hyaluronic acid (HA) polyelectrolyte multilayer (PEM) film. The properties of the PEM were tuned to mimic the Space of Disse found in liver. The thickness of the detachable PEM was 650 to 1000 nm under hydrated conditions. The Young's modulus of the PEM was approximately 42 kPa, well within the range of modulus values reported for bulk liver. The 3D liver models comprised of all three cell types and a detachable PEM exhibited stable urea production and increased albumin secretion over a 12 day culture period. Additionally, the 3D liver model maintained the phenotype of both LSECs and KCs over the 12 day culture period, verified by CD32b and CD163 staining, respectively. Additionally, CYP1A1 enzyme activity increased significantly in the 3D liver models. The number of hepatocytes in the 3D liver model increased by approximately 60% on day 16 of culture compared to day 4 indicating. Furthermore, only the 3D hepatic model maintained cellular compositions virtually identical to those found in vivo. DNA microarray measurements were conducted on the hepatocyte fractions of the 3D liver mimic to obtain insights into hepatic processes. Gene sets up-regulated in the 3D liver model were related to proliferation, migration, and deposition of extracellular matrix, all functions observed in regenerating hepatocytes. Taken together, these results suggest that inter-cellular signaling between the different cell types in the 3D liver model led to increased hepatic functions. To the best of our knowledge, this is the first study where three of the major hepatic cell types have been incorporated into a model that closely mimics the structure of the sinusoid. These studies demonstrate that the multi-cellular liver models are physiologically relevant. Such models are very promising to conduct detailed investigations into hepatic inter-cellular signaling. / Ph. D.
36

Understanding the Independent Effects of Inertia and Weight on Balance

Costello, Kerry E. 14 July 2011 (has links)
While human balance is known to be affected by altered sensory feedback, altered dynamics may also contribute to balance deficiencies in certain populations. The goal of this study was, therefore, to investigate the effects of altered dynamics, namely increased inertia and increased weight, on standing balance. Sixteen normal-weight male participants completed quiet standing in a custom-built backboard under four conditions: baseline, increased inertia only, increased weight only, and increased inertia and weight. Increased inertia did not affect body center of mass movement (COM) or center of pressure (COP) movement, suggesting that no additional ankle torque was necessary to control the increased inertial forces. Increased weight caused increased body COM movement (increased backboard angle range and angular speed) and greater acceleration of the COM (as evidenced by increased COP-COM), requiring an increased level of corrections needed to maintain upright posture (as evidenced by increased COP speed) and increased ankle torques (as evidenced by increased range of COP position). Increasing inertia and weight simultaneously had the same effects as increasing weight except that there was no increased COM movement when both inertia and weight were increased. This indicates that there may be a slight mediating effect of increasing inertia on the extreme changes in balance observed when only weight is increased. These results indicate that altered dynamics of the body have an effect on human standing balance, just as altered sensory function has an effect on balance. / Master of Science
37

Investigation of Single Span Z-Section Purlins Supporting Standing Seam Roof Systems Considering Distortional Buckling

Cortese, Scott D. 07 August 2001 (has links)
Presently, the industry accepted method for the determination of the governing buckling strength for cold-formed purlins supporting a standing seam metal roof system is the 1996 AISI Specification for the Design of Cold-Formed Steel Structural Members, which contains provisions for local and lateral buckling. Previous research has determined that the AISI provisions for local buckling strength predictions of cold-formed purlins are highly unconservative and that the AISI provisions for lateral buckling strength predictions of cold-formed purlins are overly conservative. Therefore, a more accurate "hand" method is needed to predict the buckling strengths of cold-formed purlins supporting standing seam roof systems. The primary objective of this study is to investigate the accuracy of the Hancock Method, which predicts distortional buckling strengths, as compared to the 1996 AISI Specification provisions for local and lateral buckling. This study used the experimental results of 62 third point laterally braced tests and 12 laterally unbraced tests. All tests were simple span, cold-formed Z-section supported standing seam roof systems. The local, lateral, and distortional buckling strengths were predicted for each test using the aforementioned methods. These results were compared to the experimentally obtained data and then to each other to determine the most accurate strength prediction method. Based on the results of this study, the Hancock Method for the prediction of distortional buckling strength was the most accurate method for third point braced purlins supporting standing seam roof systems. In addition, a resistance factor was developed to account for the variation between the experimental and the Hancock Method's predicted strengths. / Master of Science
38

Further Study of the Gravity Loading Base Test Method

Trout, Alvin McKinley 14 September 2000 (has links)
Presently, the industry accepted method for determining the positive moment strength of gravity loaded standing seam metal roof systems is the "Base Test Method". The Base Test Method provides a means for determining the positive moment strength of a multiple span, multiple purlin line standing seam roof system using the results from a set of six single span, simply supported, two-purlin line experimental tests. A set of six base tests must be conducted for each combination of purlin profile, deck panel profile, clip type, and intermediate bracing configuration. The primary objective of this study is to investigate the possibility of eliminating some of the roof system parameters specifically, clip type, purlin flange width, and roof panel thickness. This study used the results from nine series of tests. Each series consists of 11 to 14 gravity loaded base tests. The first three series were used to examine the effects of clip type on the strength of standing seam roof system. The final six series was used to examine the effects of flange width and roof panel thickness. All nine series were constructed using Z-purlin sections with flanges facing the same direction (like orientation). Based on the results of this study, clip type, purlin flange width, and roof panel thickness all have an effect on the strength of standing seam roof systems. Although none of the roof components can be completely eliminated from the required test matrix, by using trend relationships an acceptable test protocol was developed that results in a significant reduction in the number of required base tests. / Master of Science
39

On standing waves and models of shear dispersion / by Geoffry Norman Mercer

Mercer, Geoffry Norman January 1992 (has links)
Bibliography: leaves 117-126 / vii, 126 leaves : ill ; 30 cm. / Title page, contents and abstract only. The complete thesis in print form is available from the University Library. / Thesis (Ph.D.)--University of Adelaide, Dept. of Applied Mathematics, 1993
40

Relationship between horizontal jump tests and sprint performance

Kleeberger, Adam 30 September 2020 (has links)
Athletic performance assessments are important for identifying physical giftedness, monitoring athlete progress and supporting training recommendations. Sprint performance is a key component in athlete success both in athletics and field-based sports, and talent identification testing batteries often include sprint and jump assessments. Jumping and sprinting share a number of similar characteristics and research has shown that the relationships between sprint and jump tests depend on the recorded segment of the sprinting task, type of jump performed, and the speed and sex of the athlete. The majority of this research has been conducted in small, single sex, similar athlete cohorts and there has yet to be an analysis of a large cohorts multi-sport population with both male and female groups. Understanding the relationships between sprint ability and horizontal jump performance, based on large groups of athletes separated by sex can provide great insight into the shared and independent value of sprint and jump performance tests to support athlete testing and development. Therefore, the purpose of this study was to investigate the relationships between horizontal jump tests and sprint performance within different athlete sexes and sprint ability. To the authors’ knowledge, this is the first study with a large population sample of multisport athletes, with differing sprint and jump abilities. The associations and relationships between horizontal jump performance in standing broad jump (SBJ) and standing triple jump (STJ) with 0-10m and 30-40m sprint time in a group of athletes participating in a talent identification event were investigated in this study. Correlations and linear regressions were assessed with athletes grouped only by sex (male (n = 742), and female (n = 610)), and then grouped by sex and speed (fast = -0.5 SD, slow = +0.5 SD) for both 0-10m and 30-40m time separately. When grouped only by sex there were very large and large associations between sprint and jump measures (r = -0.533 to -0.717), and linear regression equations explained 37.4% to 55.5% of the variance. When grouped by sex and speed, slow athletes showed stronger associations (r = -0.353 to -0.488) than fast athletes (r = -0.088to -0.307). Linear regressions explained 20.3% to 28.5% of the variance in slow athletes, but only up to 12.0% of the variance explained in fast athletes. Linear regressions in slow and fast males all included SBJ as a predictor, but not STJ. Linear regressions in slow and fast females all included STJ as a predictor, but not SBJ. Overall, these results support the use of general sprint and jump tests for slower athletes, the importance of both sprint and jumps tests with higher resolution in faster athletes, as well as the utility of different jump tests to evaluate lower limb performance between sexes. / Graduate

Page generated in 0.0704 seconds