• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 528
  • 391
  • 95
  • 53
  • 23
  • 17
  • 10
  • 6
  • 6
  • 6
  • 6
  • 6
  • 6
  • 6
  • 5
  • Tagged with
  • 1307
  • 467
  • 135
  • 114
  • 97
  • 90
  • 80
  • 80
  • 76
  • 75
  • 73
  • 68
  • 68
  • 67
  • 65
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
261

Interaction Between the Effects of Preparation Method and Variety on the Glycemic Index of Novel Potato Varieties

Kinnear, Tara 06 January 2011 (has links)
As part of a project to see whether potatoes with a low glycemic-index (GI) could be developed through plant breeding, the GI values of 4 new potato varieties differing in starch structure was determined in 3 studies over 2 years in human subjects. Since cooking and cooling affects starch structure the potatoes were studied both freshly cooked (boiled) and cooled. The first study showed that cooling reduced the GI of two varieties by 40-50% but had no effect in the others (treatment × variety interaction, p=0.024), an effect which was confirmed in study 2. Differences in GI were readily explained by differences in starch structure or in-vitro digestion rate. Carbohydrate malabsorption increased from 3 to 5% upon cooling, not enough to account for the reduced GI. It is concluded that the effect on GI of cooling cooked potatoes varies in different varieties. Further research is needed to understand the mechanism.
262

Pullulan production from agro-industrial wastes

Barnett, Christian January 2000 (has links)
No description available.
263

Electrochemical oxidation of the iodate ion

Mc Ardle, Siobhan January 1994 (has links)
No description available.
264

Enzymatic hydrolysis of potato processing waste for the production of biopolymers

Rusendi, Dadi January 1994 (has links)
Biopolymers are polymers produced by certain microorganisms, that are readily degradable in the environment. These biodegradable plastics have the potential to be used as substitutes for conventional petroleum based plastic provided that the production costs can be greatly reduced. The high cost of biopolymer production is due to the cost of substrate which mainly is glucose. / The enzymatic hydrolysis of potato processing wastes was to produce glucose as a least expensive feedstock substrate for the production of biopolymers of polyhydroxybutirate (PHB) from the bacterium Alcaligenes eutrophus was studied. The enzymatic hydrolysis experiments were carried out using $ alpha$-amylase liquefaction enzymes from Aspergillus oryzae and barley-malt, and amyloglucosidase saccharification enzyme from Rhizopus. / The results indicated that the production of glucose from potato starch waste to be used as a substrate to produce biopolymers was both technically and economically feasible. A 10 to 90 ratio of barley-malt to potato starch waste gave the highest conversion of starch to glucose of 194.30 gL$ sp{-1}$ (96.56%), and the lowest liquefaction enzyme cost ($0.054) to hydrolyze one kg of potato starch waste. { it A. eutrophus /} produced PHB of 5.0 gL$ sp-1$ (76.9 % of biomass) using the glucose substrate generated from the potato starch waste.
265

The effects of surfactants on the solid substrate fermentation of potato starch /

Góes, Ana Paula. January 1999 (has links)
The potential of surfactants for improving the yields of alpha-amylase during the solid substrate fermentation (SSF) of potato starch using pure and mixed cultures was examined. The microorganisms used in this study were Aspergillus oryzae ATCC 1011, Bacillus subtilis ATCC 21556 and Bacillus subtilis ATCC 21332. The surfactants tested were Tween 20, Tween 80, SDS and surfactin. The fermentations were carried out in perforated trays after the addition of 10% (v/w) inoculum and with temperature and humidity controlled at 30°C and 90% RH respectively. Samples were taken and analyzed quantitatively for the production of alpha-amylase and biomass and qualitatively by scanning electron microscopy (SEM) using a JSM-840 A scanning microscope at 10 kV accelerating voltage. / It was possible to increase fungal alpha-amylase production by as much as 6 fold in the process with the addition of either synthetic surfactants or the biosurfactant surfactin. The bacterial alpha-amylase yields increased up to 11.5 fold in with the addition and/or the co-culture production of surfactants. The highest enzyme activity was found in the fermentation of a mixed culture of the two Bacillus strains with the addition of Tween 80. During the SSF with B. subtilis ATCC 21332 and ATCC 21556 as a mixed bacterial culture, there was also the production of surfactin in yields comparable to those obtained in a submerged fermentation. The biofilm formation as observed by SEM appeared to be associated with the presence of surfactants in the process and was not formed when no surfactants were present. The biofilm was observed as an entrapment of the bacteria in the substrate, resulting in improved access to the starch and higher production of alpha-amylase.
266

Role of amylose in structure-function relationship in starches from Australian wheat varieties.

Blazek, Jaroslav January 2008 (has links)
Doctor of Philosophy / In this thesis, a set of wheat varieties (Triticum aestivum L.) produced by the Value Added Wheat Cooperative Research Centre with lower swelling power as compared to commercial Australian wheat varieties were studied to enhance our understanding of the role of amylose in starch functionality. These starches originated from a heterogeneous genetic background and had a narrow range of elevated amylose content (35 to 43%) linked with diverse functional properties. Small-angle X-ray scattering together with complementary techniques of differential scanning calorimetry and X-ray diffraction have been employed to investigate the features of starch granular structure at the nanometer scale. Starch chemical structure was characterized in terms of amylose content and amylopectin chain length distribution. Starch functionality was studied by a series of swelling, pasting and enzymic digestion methods. This study showed that swelling power of flour is a simple test that reflects a number of industrially relevant characteristics of starch, and therefore can be used as an indicator of amylose content and pasting properties of starch. In contrast to waxy starches and starches with normal amylose content, wheat starches with increased amylose content displayed characteristic pasting properties that featured decreasing peak, breakdown and final viscosities with increasing amylose contents. Existence of a threshold value in amylose content, above which final viscosity of starch paste does not further increase with increasing amylose content, was proposed. Variability in amylopectin chain length distribution was shown to have an additional effect on the swelling and pasting properties of the starches. On the molecular level, increased amylose content was correlated with increased repeat spacing of the lamellae present in the semicrystalline growth rings. In agreement with current understanding of starch synthesis, amylose was shown to accumulate in both crystalline and amorphous parts of the lamella. Using waxy starch as a distinctive comparison with the other samples confirmed general trend of increasing amylose content being linked with the accumulation of defects within crystalline lamellae. Amylose content was shown to directly influence the architecture of semicrystalline lamellae, whereas thermodynamic and functional properties were proposed to be brought about by the interplay of amylose content and amylopectin architecture. Subjecting starch granules with varying amylose content to pancreatic α-amylase showed differences in their digestion patterns. Pancreatic α-amylase preferentially attacked amorphous regions of waxy starch granules, whereas these regions for initial preferential hydrolysis gradually diminished with increasing amylose content. Observed variations in the extent of enzymic digestion were concluded to be primarily determined by the level of swelling of amorphous growth rings, which can also explain observed morphologies of partly digested granules with varying amylose content. It was confirmed that access to the granular components is not a function of the extent of crystallinity but rather the spatial positioning of the crystalline regions within the granule. Digestion kinetics is governed by factors intrinsic to starch granules, whereas influence of enzyme type was shown to be critical in determining the absolute rate of hydrolysis. Wheat starches with increased amylose content offer the potential to be used as slow digestible starch, mostly in their granular form or when complexed with lipids. Differences among varieties largely diminished when starches were gelatinized or allowed to retrograde demonstrating the importance of granular structure on starch hydrolysis. Wheat varieties used in this study displayed widely differing pasting properties in a Rapid Visco Analyser (RVA) and textural characteristics of the respective retrograded starch gels. Varietal differences in starch chemical composition among wheat varieties were shown to have significant effect on the extent of the response of starch viscoelastic characteristics to the addition of monopalmitin. Amylose content was positively correlated with the increase in final viscosity, which was attributed to the presence of more amylose in non-aggregated state contributing to higher apparent viscosity of the starch paste. Comparison of stored gels obtained from amylose-rich starches with gel prepared from waxy wheat varieties confirmed the critical role of amylose on the formation of starch network and thus providing the strength of the gel. Lack of correlation between textural properties of stored gels with amylose content or rheological characteristics measured by the RVA indicated that subtle differences in starch structure may have far-reaching consequences in relation to the strength of the gels, although these differences may have only limited effect on pasting properties in the RVA Viscoelastic properties of starch paste prepared from commercial wheat starch were significantly altered depending on the chain length and saturation of the fatty acid of the monoglyceride added during repeated heating and cooling in the Rapid Visco Analyser. Varying effects of different monoglycerides on the paste viscosity were attributed to different complexation abilities of these lipids with starch. It was proposed that stability and structure of the starch-lipid complexes formed affect the viscosity trace of the paste subjected to multiple heating and cooling. Our study indicated that differing monoglycerides in combination with the number of heat-cool cycles can be used to induce form I or form II starch-lipid complexes and thus manipulate paste rheology, gel structure and resistant starch content.
267

Proteomics of barley starch granules /

Boren, Mats, January 2005 (has links) (PDF)
Diss. (sammanfattning) Uppsala : Sveriges lantbruksuniversitet, 2005. / Härtill 4 uppsatser.
268

Untersuchung des oralen Stärkeabbaues und der Acidogenität von Stärke /

Mörmann-Buchmann, Jeanette E. January 1979 (has links)
Diss. Nr. 6346 Naturwiss. ETH Zürich.
269

Untersuchung des oralen Abbaues und der Kariogenizität von Stärke bei der Ratte /

Böhringer, Hans-Rudolf. January 1981 (has links)
Diss. Nr. 6920 Naturwiss. ETH Zürich.
270

Numerical simulation of twin-screw extrusion of starch based material /

Edi-Soetaredjo, Felycia. January 2004 (has links) (PDF)
Thesis (M.Phil.) - University of Queensland, 2005. / Includes bibliography.

Page generated in 0.0392 seconds