• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 719
  • 238
  • 238
  • 121
  • 67
  • 48
  • 21
  • 19
  • 13
  • 10
  • 9
  • 8
  • 8
  • 8
  • 7
  • Tagged with
  • 1771
  • 529
  • 473
  • 274
  • 184
  • 139
  • 137
  • 117
  • 117
  • 115
  • 114
  • 109
  • 107
  • 102
  • 102
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
381

Certification of static analysis in many-sorted first-order logic

Cornilleau, Pierre-Emmanuel 25 March 2013 (has links) (PDF)
Static program analysis is a core technology for both verifying and finding errors in programs but most static analyzers are complex pieces of software that are not without error. A Static analysis formalised as an abstract interpreter can be proved sound, however such proofs are significantly harder to do on the actual implementation of an analyser. To alleviate this problem we propose to generate Verification Conditions (VCs, formulae valid only if the results of the analyser are correct) and to discharge them using an Automated Theorem Prover (ATP). We generate formulae in Many-Sorted First-Order Logic (MSFOL), a logic that has been successfully used in deductive program verification. MSFOL is expressive enough to describe the results of complex analyses and to formalise the operational semantics of object-oriented languages. Using the same logic for both tasks allows us to prove the soundness of the VC generator using deductive verification tools. To ensure that VCs can be automatically discharged for complex analyses of the heap, we introduce a VC calculus that produces formulae belonging to a decidable fragment of MSFOL. Furthermore, to be able to certify different analyses with the same calculus, we describe a family of analyses with a parametric concretisation function and instrumentation of the semantics. To improve the reliability of ATPs, we also studied the result certification of Satisfiability Modulo Theory solvers, a family of ATPs dedicated to MSFOL. We propose a modular proof-system and a modular proof-verifier programmed and proved correct in Coq, that rely on exchangeable verifiers for each of the underlying theories.
382

Decision support algorithms for power system and power electronic design

Heidari, Maziar 10 September 2010 (has links)
The thesis introduces an approach for obtaining higher level decision support information using electromagnetic transient (EMT) simulation programs. In this approach, a suite of higher level driver programs (decision support tools) control the simulator to gain important information about the system being simulated. These tools conduct a sequence of simulation runs, in each of which the study parameters are carefully selected based on the observations of the earlier runs in the sequence. In this research two such tools have been developed in conjunction with the PSCAD/EMTDC electromagnetic transient simulation program. The first tool is an improved optimization algorithm, which is used for automatic optimization of the system parameters to achieve a desired performance. This algorithm improves the capabilities of the previously reported method of optimization-enabled electromagnetic transient simulation by using an enhanced gradient-based optimization algorithm with constraint handling techniques. In addition to allow handling of design problems with more than one objective the thesis proposes to augment the optimization tool with the technique of Pareto optimality. A sequence of optimization runs are conducted to obtain the Pareto frontier, which quantifies the tradeoffs between the design objectives. The frontier can be used by the designer for decision making process. The second tool developed in this research helps the designer to study the effects of uncertainties in a design. By using a similar multiple-run approach this sensitivity analysis tool provides surrogate models of the system, which are simple mathematical functions that represent different aspects of the system performance. These models allow the designer to analyze the effects of uncertainties on system performance without having to conduct any further time-consuming EMT simulations. In this research it has been also proposed to add probabilistic analysis capabilities to the developed sensitivity analysis tool. Since probabilistic analysis of a system using conventional techniques (e.g. Monte-Carlo simulations) normally requires a large number of EMT simulation runs, using surrogate models instead of the actual simulation runs yields significant savings in terms of shortened simulation time. A number of examples have been used throughout the thesis to demonstrate the application and usefulness of the proposed tools.
383

Spherical harmonic inductive detection coils and their use in dynamic pre-emphasis for magnetic resonance imaging

Edler, Karl 13 September 2010 (has links)
The issue of eddy currents induced by the rapid switching of magnetic field gradients is a long-standing problem in magnetic resonance imaging. A new method for dealing with this problem is presented whereby spatial harmonic components of the magnetic field are continuously sensed, through their temporal rates of change, and corrected. In this way, the effects of the eddy currents on multiple spatial harmonic components of the magnetic field can be detected and corrections applied during the rise time of the gradients. Sensing the temporal changes in each spatial harmonic is made possible with specially designed detection coils. However to make the design of these coils possible, general relationships between the spatial harmonics of the field, scalar potential, and vector potential are found within the quasi-static approximation. These relationships allow the vector potential to be found from the field – an inverse curl operation – and may be of use beyond the specific problem of detection coil design. Using the detection coils as sensors, methods are developed for designing a negative feedback system to control the eddy current effects and optimizing that system with respect to image noise and distortion. The design methods are successfully tested in a series of proof-of-principle experiments which lead to a discussion of how to incorporate similar designs into an operational MRI.
384

Vertical transportation planning in buildings

Peters, Richard David January 1998 (has links)
This thesis is submitted for the degree of Doctor of Engineering in Environmental Technology. The degree is awarded for industrially relevant research, based in industry, and supported by a programme of development courses. This project aims to contribute to a reduction in the environmental burdens of vertical transportation systems. The author has carried out an environmental assessment showing that the dominating environmental burdens of vertical transportation systems arise from their use of electricity while in operation in buildings. An assessment of traffic demand has concluded that we are probably over-sizing lifts, and are therefore installing systems that consume more energy than necessary. Traffic planning techniques for single and double deck lifts have been reviewed and developed. The kinematics (motion) of lifts has been studied. New formulae have been derived that allow us to plot travel profiles for any input of journey distance, maximum velocity, maximum acceleration and maximum jerk. Taking these journey profiles as inputs, a mathematical model of a DC Static Converter Drive has been developed. The model can be used to calculate the energy consumption of any individual lift trip. A lift simulation program has been developed. The program uses the research in traffic, kinematics and motor modelling as a basis for developing energy saving lift control strategies.
385

CHARACTERIZATION OF COLLOIDAL NANOPARTICLE AGGREGATES USING LIGHT SCATTERING TECHNIQUES

Kozan, Mehmet 01 January 2007 (has links)
Light scattering is a powerful characterization tool for determining shape, size, and size distribution of fine particles, as well as complex, irregular structures of their aggregates. Small angle static light scattering and elliptically polarized light scattering techniques produce accurate results and provide real time, non-intrusive, and in-situ observations on prevailing process conditions in three-dimensional systems. As such, they complement conventional characterization tools such as SEM and TEM which have their known disadvantages and limitations. In this study, we provide a thorough light scattering analysis of colloidal tungsten trioxide (WO3) nanoparticles in the shape of irregular nanospheres and cylindrical nanowires, and of the resulting aggregate morphologies. Aggregation characteristics as a function of primary particle geometry, aspect ratio of nanowires, and the change in dispersion stability in various polar solvents without the use of dispersants are monitored over different time scales and are described using the concepts of fractal theory. Using forward scattered intensities, sedimentation rates as a result of electrolyte addition and particle concentration at low solution pH are quantified, in contrast to widely reported visual observations, and are related to the aggregate structure in the dispersed phase. For nanowires of high aspect ratios, when aggregate structures cannot directly be inferred from measurements, an analytical and a quasiexperimental method are used.
386

An Address-Based Routing Scheme for Static Applications of Wireless Sensor Networks

Li, Weibo January 2008 (has links)
Wireless sensor networks (WSNs), being a relatively new technology, largely employ protocols designed for other ad hoc networks, especially mobile ad hoc networks (MANETs). However, on the basis of applications, there are many differences between WSNs and other types of ad hoc network and so WSNs would benefit from protocols which take into account their specific properties, especially in routing. Bhatti and Yue (2006) proposed an addressing scheme for multi-hop networks. It provides a systematic address structure for WSNs and allows network topology to avoid the fatal node failure problem which could occur with the ZigBee tree structure. In this work, a new routing strategy is developed based on Bhatti and Yue’s addressing scheme. The new approach is to implement a hybrid flooding scheme that combines flooding with shortest-path methods to yield a more practical routing protocol for static WSN applications. The primary idea is to set a flooding counter K as an overhead parameter of control messages which are used to discover routes between any arbitrary nodes. These route request messages are flooded for K hops and then oriented by shortest-path routing from multiple nodes in the edge of the flooding area to the destination. The simulation results show that this protocol under certain wireless circumstances is more energy conscious and produces less redundancy than reactive ZigBee routing protocol. Another advantage is that the routing protocol can adapt any dynamic environment in various WSN applications to achieve a satisfactory data delivery ratio in exchange for redundancy.
387

FAULT LINKS: IDENTIFYING MODULE AND FAULT TYPES AND THEIR RELATIONSHIP

Michael, Inies Raphael Chemmannoor 01 January 2004 (has links)
The presented research resulted in a generic component taxonomy, a generic code-faulttaxonomy, and an approach to tailoring the generic taxonomies into domain-specific aswell as project-specific taxonomies. Also, a means to identify fault links was developed.Fault links represent relationships between the types of code-faults and the types ofcomponents being developed or modified. For example, a fault link has been found toexist between Controller modules (that forms a backbone for any software via. itsdecision making characteristics) and Control/Logic faults (such as unreachable code).The existence of such fault links can be used to guide code reviews, walkthroughs, testingof new code development, as well as code maintenance. It can also be used to direct faultseeding. The results of these methods have been validated. Finally, we also verified theusefulness of the obtained fault links through an experiment conducted using graduatestudents. The results were encouraging.
388

GRAPHICAL MODELING AND SIMULATION OF A HYBRID HETEROGENEOUS AND DYNAMIC SINGLE-CHIP MULTIPROCESSOR ARCHITECTURE

Zheng, Chunfang 01 January 2004 (has links)
A single-chip, hybrid, heterogeneous, and dynamic shared memory multiprocessor architecture is being developed which may be used for real-time and non-real-time applications. This architecture can execute any application described by a dataflow (process flow) graph of any topology; it can also dynamically reconfigure its structure at the node and processor architecture levels and reallocate its resources to maximize performance and to increase reliability and fault tolerance. Dynamic change in the architecture is triggered by changes in parameters such as application input data rates, process execution times, and process request rates. The architecture is a Hybrid Data/Command Driven Architecture (HDCA). It operates as a dataflow architecture, but at the process level rather than the instruction level. This thesis focuses on the development, testing and evaluation of a new graphic software (hdca) developed to first do a static resource allocation for the architecture to meet timing requirements of an application and then hdca simulates the architecture executing the application using statically assigned resources and parameters. While simulating the architecture executing an application, the software graphically and dynamically displays parameters and mechanisms important to the architectures operation and performance. The new graphical software is able to show system and node level dynamic capability of the HDCA. The newly developed software can model a fixed or varying input data rate. The model also allows fault tolerance analysis of the architecture.
389

PROCESS FOR FORMATION OF CATIONIC POLY (LACTIC-CO-GLYCOLIC ACID) NANOPARTICLES USING STATIC MIXERS

Charabudla, Yamuna Reddy 01 January 2008 (has links)
Nanoparticles have received special attention over past few years as potential drug carriers for proteins/peptides and genes. Biodegradable polymeric poly (lactic-co-glycolic acid) (PLGA) nanoparticles are being employed as non-viral gene delivery systems for DNA. This work demonstrates a scalable technology for synthesis of nanoparticles capable of gene delivery. Cationic PLGA nanoparticles are produced by emulsiondiffusion- evaporation technique employing polyvinyl alcohol (PVA) as stabilizer and chitosan chloride for surface modification. A sonicator is used for the emulsion step and a static mixer is used for dilution in the diffusion step of the synthesis. A static mixer is considered ideal for the synthesis of PLGA nanoparticles as it is easily scalable to industrial production. The resulting nanoparticles are spherical in shape with size in the range of 100–250 nm and posses a zeta potential above +30 mV, indicating good stability of the colloid with a positive charge to bind to anionic DNA. The mechanism of nanoparticle formation was analyzed using multimodal size distributions (MSD), zeta potential data, and transmission electron microscopy (TEM) images. Several emulsion techniques and dilution effect were analyzed in this work. PVA acts as a compatibilizer for chitosan chloride and dilution of primary emulsion has little effect over the particle size of the PLGA nanoparticles.
390

Does Static stretching and/or Muscle fatigue create a Cross-over effect? : An experimental study

Nordin, Michelle January 1900 (has links)
Background: Extensive literature has described a decrease in force output performance in the local muscle groups after static stretching, and static stretching has therefore been recommended not to be performed during warm-ups. A recent study showed evidence of a cross-over effect in regard to static stretching, i.e. non-local muscles were also affected by static stretching. This result could however be due to fatigue in the muscle groups stretched, and a fatigued condition has previously shown cross-over effects in several studies. Aim: The aim of the study was to (1) examine if upper-limb static stretching and muscle fatigue display a cross-over effect that show changes in force output in the lower limbs, and (2) if there was a difference between the effects of the static stretch protocol and the muscle fatigue protocol for the purpose of examining if fatigue is the larger factor for cross-over. Methods: Concentric maximal jump height of 15 subjects with previous strength training experience of at least one year was measured and the subjects subsequently performed both intervention protocols in a random order. After each protocol concentric jump height was measured again. The static stretch protocol consisted of a static stretch for the shoulder at an intensity of “Very hard”, 10 repetitions of 30 second stretches with 15 seconds rest in between repetitions. The muscle fatigue protocol consisted of 10 repetitions of 30 seconds isometric muscle contraction in the same position with 15 seconds rest between repetitions at an intensity of “Very hard”. The data was collected on an infra-red contact mat and differences between the mean jump heights pre- and post each protocol and between the different protocols were analyzed with pair sample t-test.   Result: Mean concentric jump height (± standard deviation, SD) was 25.31 (±9.4) cm for the baseline jumps, 23.66 (±8.89) cm post static stretch intervention jumps and 24.13 (±8.90) cm post muscle fatigue intervention jumps. This indicates a cross-over effect on force output in the legs post static stretching with a mean reduction of 1.65 cm (p=0.001). Upper-limb muscle fatigue indicated a cross-over effect on force output in the legs with a mean reduction of 1.18 cm (p=0.032). There was no statistical significance between the two protocols (p=0.146). Conclusion: The results presented a cross-over effect on both conditions. This is in line with previous research in the area. The results implicate that static stretching and muscle fatigue effects the central nervous system, which can lead to impairments in performance in non-local muscles. This can be considered in warm-up and exercise program design when force output is of great importance for performance

Page generated in 0.056 seconds