• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 3
  • 2
  • 2
  • Tagged with
  • 15
  • 15
  • 15
  • 13
  • 12
  • 9
  • 7
  • 7
  • 6
  • 6
  • 6
  • 6
  • 6
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Electromagnetic Transient and Dynamic Modeling and Simulation of a StatCom-SMES Compensator in Power Systems

Arsoy, Aysen 28 April 2000 (has links)
Electromagnetic transient and dynamic modeling and simulation studies are presented for a StatCom-SMES compensator in power systems. The transient study aims to better understand the transient process and interaction between a high power/high voltage SMES coil and its power electronics interface, dc-dc chopper. The chopper is used to attach the SMES coil to a StatCom. Following the transient study, the integration of a StatCom with SMES was explored to demonstrate the effectiveness of the combined compensator in damping power oscillations. The transient simulation package PSCAD/EMTDC has been used to perform the integrated modeling and simulation studies. A state of the art review of SMES technology was conducted. Its applications in power systems were discussed chronologically. The cost effective and feasible applications of this technology were identified. Incorporation of a SMES coil into an existing StatCom controller is one of the feasible applications, which can provide improved StatCom operation, and therefore much more flexible and controllable power system operation. The SMES coil with the following unique design characteristics of 50MW (96 MW peak), 100 MJ, 24 kV interface has been used in this study. As a consequence of the high power/ high voltage interface, special care needs to be taken with overvoltages that can stress the insulation of the coil. This requires an investigation of transient overvoltages through a detailed modeling of SMES and its power electronics interface. The electrical model for the SMES coil was developed based on geometrical dimensions of the coil. The interaction between the SMES coil and its power electronics interface (dc-dc chopper for the integration to StatCom) was modeled and simulated to identify transient overvoltages. Transient suppression schemes were developed to reduce these overvoltages. Among these are MOV implementation, surge capacitors, different configurations of the dc-dc chopper. The integration of the SMES coil to a StatCom controller was developed, and its dynamic behavior in damping oscillations following a three-phase fault was investigated through a number of simulation case studies. The results showed that the addition of energy storage to a StatCom controller can improve the StatCom-alone operation and can possibly reduce the MVA rating requirement for the StatCom operating alone. The effective location selection of a StatCom-SMES controller in a generic power system is also discussed. / Ph. D.
2

A Study on Wind Turbine Low Voltage Ride Through Capability Enhancement by STATCOM and DVR

Lin, Chih-peng 05 February 2010 (has links)
When more induction generator based wind farms are integrated into the power system, the system voltage dips and stability problems may arise due to the draw of reactive power by induction generators. The power system short-circuit event induced wind turbine trips could result in power imbalance and lead to power system instability. This thesis studies the influence of two compensation techniques on the wind turbine low voltage ride-through (LVRT) capability. One of which is based on a parallel compensation by a static synchronous compensator (STATCOM), and the other one is a series compensation by a dynamic voltage restorer (DVR). In this study, Matlab tools and models are used to simulate an active-stall controlled fixed-speed induction generator connected to a power system. Two system configurations are used to simulate three phase faults and compare the improvement of wind turbine LVRT capability due to the two studied compensation techniques. Simulation results indicate that wind turbine compensated by DVR would have better LVRT performance than that by STATCOM in dealing with the low voltage situations due to system faults.
3

Development of Intelligent-Based Solar and Diesel-Wind Hybrid Power Control Systems

Chang-Chien, Nan-Yi 21 June 2010 (has links)
A solar and diesel-wind hybrid power control systems is proposed in the thesis. The system consists of solar power, wind power, diesel-engine, a static synchronous compensator and an intelligent power controller. MATLAB/Simulink was used to build the dynamic model and simulate the solar and diesel-wind hybrid power system. A static synchronous compensator was used to supply reactive power and regulate the voltage of the hybrid system. To achieve a fast and stable response for the real power control, an intelligent controller was proposed, which consists of the Radial Basis Function Network (RBFN) and the Elman Neural Network (ENN) for maximum power point tracking (MPPT). The pitch angle control of wind power uses ENN controller, and the output is fed to the wind turbine to achieve the MPPT. The solar system uses RBFN, and the output signal is used to control the DC / DC boost converters to achieve the MPPT.
4

Design And Implementation Of A Voltage Source Converter Based Statcom For Reactive Power Compensation And Harmonic Filtering

Cetin, Alper 01 April 2007 (has links) (PDF)
In this thesis, design and implementation of a distribution-type, voltage source converter (VSC) based static synchronous compensator (D-STATCOM) having the simplest converter and coupling transformer topologies have been carried out. The VSC STATCOM is composed of a +/- 750 kVAr full-bridge VSC employing selective harmonic elimination technique, a low-pass input filter, and a &amp / #8710 / /Y connected coupling transformer for connection to medium voltage bus. The power stage of VSC based STATCOM is composed of water-cooled high voltage IGBT modules switched at 850 Hz for the elimination of 5th, 7th, 11th, 13th, 17th, 19th, 23rd,and 25th voltage harmonics. Special care has been taken in the laminated busbar design to minimize stray inductances between power semiconductors and dc link capacitor. Reactive power control is achieved by applying the phase angle control technique. The effect of input filter on total demand distortion has been investigated theoretically by mathematical derivations. The proposed VSC STATCOM has been implemented for reactive power compensation of Coal Preparation System in Kemerk&ouml / y Thermal Power Plant. The field test results have shown the success of the implemented system in view of fast response in reactive power compensation, and minimum input current harmonic content, and compliance with the IEEE Std. 519-1992 even for the weakest power systems. The application of selective harmonic elimination technique and phase angle control to VSC STATCOM has led to optimum switching frequency and device utilization for high voltage IGBTs at the expense of slower response as compared to other PWM techniques.
5

Investigation and Model Development for Operational Modes of a Unified Power Flow Controller

Mahmoodianfard, Forough 30 November 2012 (has links)
The focus of this research is on deriving small signal stability models for different Flexible AC Transmission Systems devices by introducing a simple systematic method that is applicable to any dynamic device. Two different small signal models for Unified Power Flow Controllers are introduced. One model is called the power control mode and the other model is the voltage control mode. The two models are compared from transient stability point of view to show the necessity of developing both models for UPFC. The thesis also shows how to derive the small signal stability model of Static Synchronous Compensator, as the shunt branch of UPFC. The small signal stability models of both devices are then validated to ensure the accuracy of the derived models. STATCOM and UPFC power control mode are validated against PSCAD. The UPFC voltage control mode is validated against nonlinear solution of system equations.
6

Investigation and Model Development for Operational Modes of a Unified Power Flow Controller

Mahmoodianfard, Forough 30 November 2012 (has links)
The focus of this research is on deriving small signal stability models for different Flexible AC Transmission Systems devices by introducing a simple systematic method that is applicable to any dynamic device. Two different small signal models for Unified Power Flow Controllers are introduced. One model is called the power control mode and the other model is the voltage control mode. The two models are compared from transient stability point of view to show the necessity of developing both models for UPFC. The thesis also shows how to derive the small signal stability model of Static Synchronous Compensator, as the shunt branch of UPFC. The small signal stability models of both devices are then validated to ensure the accuracy of the derived models. STATCOM and UPFC power control mode are validated against PSCAD. The UPFC voltage control mode is validated against nonlinear solution of system equations.
7

Utilização de redes neurais artificiais no ajuste de controladores suplementares e dispositivo FACTS STATCOM para a melhoria da estabilidade a pequenas perturbações do sistema elétrico de potência

Pereira, André Luiz Silva [UNESP] 21 August 2009 (has links) (PDF)
Made available in DSpace on 2014-06-11T19:30:50Z (GMT). No. of bitstreams: 0 Previous issue date: 2009-08-21Bitstream added on 2014-06-13T19:19:29Z : No. of bitstreams: 1 pereira_als_dr_ilha.pdf: 1505539 bytes, checksum: 8b3fa09211b5f80a63a93c6fd21675aa (MD5) / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) / Este trabalho apresenta estudos referentes à inclusão do dispositivo FACTS STATCOM e a utilização de Redes Neurais Artificiais para o ajuste dos parâmetros de sinais adicionais estabilizantes (PSS’s e POD’s) no sistema de potência multimáquinas. O objetivo é a melhoria da estabilidade frente às pequenas perturbações do sistema de energia elétrica. O modelo matemático utilizado para o estudo das oscilações eletromecânicas de baixa freqüência em sistemas de energia elétrica foi o Modelo de Sensibilidade de Potência (MSP), modificado para permitir a inclusão do dispositivo STATCOM. Este modelo baseia-se no princípio de que o balanço de potência ativa e reativa deve ser satisfeito continuamente em qualquer barra do sistema durante um processo dinâmico. Prosseguindo na realização do trabalho foram desenvolvidos os modelos matemáticos para a inclusão dos PSS’s e POD’s no sistema elétrico, bem como foi realizada uma discussão a respeito da escolha do local de instalação destes controladores e técnicas clássicas para o ajuste de seus parâmetros. A partir disto foram utilizadas redes neurais artificiais (RNA’s) com o objetivo de ajustar os parâmetros dos controladores. A rede utilizada para este fim foi a do tipo Perceptron Multicamadas, sendo utilizado para o seu treinamento o algoritmo Backpropagation. Simulações foram realizadas e os resultados obtidos para os sistemas testes Sul Brasileiro, Simétrico de Duas Áreas e New England são comentados / This work presents studies about the inclusion of FACTS STATCOM devices using neural networks tune stability additional signal parameters (PSS’s and POD’s) on a multi-machine power system. The objective is to improve the stability to small perturbations in electric power systems. The mathematical model used for studying the lower frequency electromechanical oscillations is the Power Sensitivity Model (PSM), modified to allow the inclusion of the STATCOM device. This model is based on the principle that the active and reactive power balance must be continuously satisfied in every bus of the system during the dynamical process. Mathematical models were developed to include the PSS’s and POD’s on the electrical system, as well as the local to install these control devices and the classical techniques to adjust these parameters. Afterwards, the neural networks were used to adjust the parameters of the controllers. The neural network used is a Perceptron Multi Layer, with the training by backpropagation. Simulations were effectuated for the South Brazilian Power System, the Two Areas Symmetrical Power System and the New England Power System
8

Regulador de tensão móvel controlado em tensão com rastreamento do ponto de mínima potência aparente

Hock Júnior, Rubens Tadeu 24 February 2015 (has links)
Made available in DSpace on 2016-12-12T20:27:38Z (GMT). No. of bitstreams: 1 Rubens Hock.pdf: 9150198 bytes, checksum: dc75d13b884c75e842633257c0db27e6 (MD5) Previous issue date: 2015-02-24 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / This paper presents a mobile voltage regulator based in a Distribution Static Synchronous Compensator (DSTATCOM) applied to low voltage distribution grids. The DSTATCOM consists in a three-phase four-wire inverter connected to the grid through a second order low pass filter. The control structure is composed of three output voltage loops with active damping and the two dc bus loops. In addition, a new concept of Minimum Power Point Tracking (mPPT) is introduced, forcing the DSTATCOM to operate with the minimum power. In certain conditions, this means no compensation. The dynamic models of the converter are presented, as well as the control design. Simulation results show the capacity of voltage regulation and the features of the mPPT, even under grid and load unbalances and nonlinear loads. This work is concluded with the construction of a 30 kVA prototype and validation through experimental results proves the proper functioning of the voltage regulator. / Esse trabalho apresenta um regulador de tensão móvel baseado em um compensador estático de reativos (DSTATCOM) aplicado a redes de distribuição de baixa tensão. O DSTATCOM consiste em um inversor trifásico a quatro fios conectado à rede através de um filtro de segunda ordem. A estrutura de controle é composta por três malhas de tensão de saída com amortecimento ativo e duas malhas de tensão do barramento cc. Em adição, um novo conceito de rastreamento da mínima potência (mPPT) é introduzido, forçando o DSTATCOM a operar com a mínima potência. Em certas ocasiões, isso significa nenhuma compensação. Os modelos dinâmicos do conversor são apresentados, assim como o projeto de controle. Resultados de simulação mostram a capacidade de regulação da tensão e as características do mPPT, mesmo com desequilíbrios na rede e/ou na carga e com cargas não lineares. O trabalho é concluído com a construção de um protótipo de 30 kVA e validação dos estudos através de resultados experimentais obtidos comprovam o bom funcionamento do regulador de tensão.
9

Small-Signal Stability, Transient Stability and Voltage Regulation Enhancement of Power Systems with Distributed Renewable Energy Resources

Kanchanaharuthai, Adirak 30 January 2012 (has links)
No description available.
10

Investigation of the application of UPFC controllers for weak bus systems subjected to fault conditions : an investigation of the behaviour of a UPFC controller : the voltage stability and power transfer capability of the network and the effect of the position of unsymmetrical fault conditions

Jalboub, Mohamed January 2012 (has links)
In order to identify the weakest bus in a power system so that the Unified Power Flow Controller could be connected, an investigation of static and dynamic voltage stability is presented. Two stability indices, static and dynamic, have been proposed in the thesis. Multi-Input Multi-Output (MIMO) analysis has been used for the dynamic stability analysis. Results based on the Western System Coordinate Council (WSCC) 3-machine, 9-bus test system and IEEE 14 bus Reliability Test System (RTS) shows that these indices detect with the degree of accuracy the weakest bus, the weakest line and the voltage stability margin in the test system before suffering from voltage collapse. Recently, Flexible Alternating Current Transmission systems (FACTs) have become significant due to the need to strengthen existing power systems. The UPFC has been identified in literature as the most comprehensive and complex FACTs equipment that has emerged for the control and optimization of power flow in AC transmission systems. Significant research has been done on the UPFC. However, the extent of UPFC capability, connected to the weakest bus in maintaining the power flows under fault conditions, not only in the line where it is installed, but also in adjacent parallel lines, remains to be studied. In the literature, it has normally been assumed the UPFC is disconnected during a fault period. In this investigation it has been shown that fault conditions can affect the UPFC significantly, even if it occurred on far buses of the power system. This forms the main contribution presented in this thesis. The impact of UPFC in minimizing the disturbances in voltages, currents and power flows under fault conditions are investigated. The WSCC 3-machine, 9-bus test system is used to investigate the effect of an unsymmetrical fault type and position on the operation of UPFC controller in accordance to the G59 protection, stability and regulation. Results show that it is necessary to disconnect the UPFC controller from the power system during unsymmetrical fault conditions.

Page generated in 0.1053 seconds