• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 50
  • 43
  • 11
  • 8
  • 4
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 270
  • 270
  • 80
  • 77
  • 67
  • 53
  • 46
  • 34
  • 33
  • 32
  • 32
  • 30
  • 30
  • 29
  • 26
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
61

ACCOUNTING FOR MATCHING UNCERTAINTY IN PHOTOGRAPHIC IDENTIFICATION STUDIES OF WILD ANIMALS

Ellis, Amanda R. 01 January 2018 (has links)
I consider statistical modelling of data gathered by photographic identification in mark-recapture studies and propose a new method that incorporates the inherent uncertainty of photographic identification in the estimation of abundance, survival and recruitment. A hierarchical model is proposed which accepts scores assigned to pairs of photographs by pattern recognition algorithms as data and allows for uncertainty in matching photographs based on these scores. The new models incorporate latent capture histories that are treated as unknown random variables informed by the data, contrasting past models having the capture histories being fixed. The methods properly account for uncertainty in the matching process and avoid the need for researchers to confirm matches visually, which may be a time consuming and error prone process. Through simulation and application to data obtained from a photographic identification study of whale sharks I show that the proposed method produces estimates that are similar to when the true matching nature of the photographic pairs is known. I then extend the method to incorporate auxiliary information to predetermine matches and non-matches between pairs of photographs in order to reduce computation time when fitting the model. Additionally, methods previously applied to record linkage problems in survey statistics are borrowed to predetermine matches and non-matches based on scores that are deemed extreme. I fit the new models in the Bayesian paradigm via Markov Chain Monte Carlo and custom code that is available by request.
62

ESTIMATION IN PARTIALLY LINEAR MODELS WITH CORRELATED OBSERVATIONS AND CHANGE-POINT MODELS

Fan, Liangdong 01 January 2018 (has links)
Methods of estimating parametric and nonparametric components, as well as properties of the corresponding estimators, have been examined in partially linear models by Wahba [1987], Green et al. [1985], Engle et al. [1986], Speckman [1988], Hu et al. [2004], Charnigo et al. [2015] among others. These models are appealing due to their flexibility and wide range of practical applications including the electricity usage study by Engle et al. [1986], gum disease study by Speckman [1988], etc., wherea parametric component explains linear trends and a nonparametric part captures nonlinear relationships. The compound estimator (Charnigo et al. [2015]) has been used to estimate the nonparametric component of such a model with multiple covariates, in conjunction with linear mixed modeling for the parametric component. These authors showed, under a strict orthogonality condition, that parametric and nonparametric component estimators could achieve what appear to be (nearly) optimal rates, even in the presence of subject-specific random effects. We continue with research on partially linear models with subject-specific random intercepts. Inspired by Speckman [1988], we propose estimators of both parametric and nonparametric components of a partially linear model, where consistency is achievable under an orthogonality condition. We also examine a scenario without orthogonality to find that bias could still exist asymptotically. The random intercepts accommodate analysis of individuals on whom repeated measures are taken. We illustrate our estimators in a biomedical case study and assess their finite-sample performance in simulation studies. Jump points have often been found within the domain of nonparametric models (Muller [1992], Loader [1996] and Gijbels et al. [1999]), which may lead to a poor fit when falsely assuming the underlying mean response is continuous. We study a specific type of change-point where the underlying mean response is continuous on both left and right sides of the change-point. We identify the convergence rate of the estimator proposed in Liu [2017] and illustrate the result in simulation studies.
63

Mixtures-of-Regressions with Measurement Error

Fang, Xiaoqiong 01 January 2018 (has links)
Finite Mixture model has been studied for a long time, however, traditional methods assume that the variables are measured without error. Mixtures-of-regression model with measurement error imposes challenges to the statisticians, since both the mixture structure and the existence of measurement error can lead to inconsistent estimate for the regression coefficients. In order to solve the inconsistency, We propose series of methods to estimate the mixture likelihood of the mixtures-of-regressions model when there is measurement error, both in the responses and predictors. Different estimators of the parameters are derived and compared with respect to their relative efficiencies. The simulation results show that the proposed estimation methods work well and improve the estimating process.
64

A Flexible Zero-Inflated Poisson Regression Model

Roemmele, Eric S. 01 January 2019 (has links)
A practical problem often encountered with observed count data is the presence of excess zeros. Zero-inflation in count data can easily be handled by zero-inflated models, which is a two-component mixture of a point mass at zero and a discrete distribution for the count data. In the presence of predictors, zero-inflated Poisson (ZIP) regression models are, perhaps, the most commonly used. However, the fully parametric ZIP regression model could sometimes be restrictive, especially with respect to the mixing proportions. Taking inspiration from some of the recent literature on semiparametric mixtures of regressions models for flexible mixture modeling, we propose a semiparametric ZIP regression model. We present an "EM-like" algorithm for estimation and a summary of asymptotic properties of the estimators. The proposed semiparametric models are then applied to a data set involving clandestine methamphetamine laboratories and Alzheimer's disease.
65

COMPOSITE NONPARAMETRIC TESTS IN HIGH DIMENSION

Villasante Tezanos, Alejandro G. 01 January 2019 (has links)
This dissertation focuses on the problem of making high-dimensional inference for two or more groups. High-dimensional means both the sample size (n) and dimension (p) tend to infinity, possibly at different rates. Classical approaches for group comparisons fail in the high-dimensional situation, in the sense that they have incorrect sizes and low powers. Much has been done in recent years to overcome these problems. However, these recent works make restrictive assumptions in terms of the number of treatments to be compared and/or the distribution of the data. This research aims to (1) propose and investigate refined small-sample approaches for high-dimension data in the multi-group setting (2) propose and study a fully-nonparametric approach, and (3) conduct an extensive comparison of the proposed methods with some existing ones in a simulation. When treatment effects can meaningfully be formulated in terms of means, a semiparametric approach under equal and unequal covariance assumptions is investigated. Composites of F-type statistics are used to construct two tests. One test is a moderate-p version – the test statistic is centered by asymptotic mean – and the other test is a large-p version asymptotic-expansion based finite-sample correction for the mean of the test statistic. These tests do not make any distributional assumptions and, therefore, they are nonparametric in a way. The theory for the tests only requires mild assumptions to regulate the dependence. Simulation results show that, for moderately small samples, the large-p version yields substantial gain in the size with a small power tradeoff. In some situations mean-based inference is not appropriate, for example, for data that is in ordinal scale or heavy tailed. For these situations, a high-dimensional fully-nonparametric test is proposed. In the two-sample situation, a composite of a Wilcoxon-Mann-Whitney type test is investigated. Assumptions needed are weaker than those in the semiparametric approach. Numerical comparisons with the moderate-p version of the semiparametric approach show that the nonparametric test has very similar size but achieves superior power, especially for skewed data with some amount of dependence between variables. Finally, we conduct an extensive simulation to compare our proposed methods with other nonparametric test and rank transformation methods. A wide spectrum of simulation settings is considered. These simulation settings include a variety of heavy tailed and skewed data distributions, homoscedastic and heteroscedastic covariance structures, various amounts of dependence and choices of tuning (smoothing window) parameter for the asymptotic variance estimators. The fully-nonparametric and the rank transformation methods behave similarly in terms of type I and type II errors. However, the two approaches fundamentally differ in their hypotheses. Although there are no formal mathematical proofs for the rank transformations, they have a tendency to provide immunity against effects of outliers. From a theoretical standpoint, our nonparametric method essentially uses variable-by-variable ranking which naturally arises from estimating the nonparametric effect of interest. As a result of this, our method is invariant against application of any monotone marginal transformations. For a more practical comparison, real-data from an Encephalogram (EEG) experiment is analyzed.
66

Statistical Models of the Lambert Road Bridge: Changes in Natural Frequencies Due to Temperature

Foust, Nickolas Ryan 01 May 2014 (has links)
Structural health monitoring (SHM) using ambient vibration has become a tool in evaluating and assessing the condition of civil structures. For bridge structures, a vibration-based SHM system uses the dynamic response of a bridge to measure modal parameters. A change in a structure’s modal parameters can indicate a physical change in the system, such as damage or a boundary condition change. These same modal parameters are sensitive to environmental factors, mainly temperature. Statistical models have been utilized to filter out modal parameter changes influenced by temperature and those caused by physical changes. Statistical models also help describe the relationship between modal parameters and environmental conditions. The Lambert Road Bridge is a concrete integral abutment bridge located south of Sacramento, California, and is studied through this paper. A SHM system has been installed and has been recorded for 3 years. Three months of SHM records will be used to understand how the bridge’s natural frequencies typically change due to temperature. First, temperature was observed to be the driving force behind many of the SHM records. A linear relationship was found between the structure’s natural frequency and temperature. Collinearities between potential predictor variables were noticed. Initial linear regression analyses were completed with a bridge average temperature. Certain strain gauge regression models were used as “base” models to eliminate other regression models that potentially were altered by aliasing. These base models, and the other seven corresponding models, showed a direct linear relationship between temperature and natural frequency. It was concluded that changes in boundary conditions due to bridge expansion have a greater effect on global dynamic properties than material property changes due to temperature. Stepwise linear regression followed the initial regression modeling. Eight thermocouple readings were consistently being selected in the stepwise process and were chosen to be the main predictor variables. Due to collinearities among the predictor variables, ridge regression was completed to eliminate any unstable variables. The final six sensors’ locations indicate that longitudinal, transverse, and depth gradients are all important factors in the linear regression models of this relationship. Comparing the multiple linear regression models to single-variable regression models with the highest averaged adjusted R2 values, a minimum percent difference of 21% and 19% was seen for the first and second natural frequencies, respectively. It was also concluded that these multiple linear regression models explained more of the variability in the natural frequencies and would be a better model to use to filter out temperature effects.
67

Mixture model cluster analysis under different covariance structures using information complexity

Erar, Bahar 01 August 2011 (has links)
In this thesis, a mixture-model cluster analysis technique under different covariance structures of the component densities is developed and presented, to capture the compactness, orientation, shape, and the volume of component clusters in one expert system to handle Gaussian high dimensional heterogeneous data sets to achieve flexibility in currently practiced cluster analysis techniques. Two approaches to parameter estimation are considered and compared; one using the Expectation-Maximization (EM) algorithm and another following a Bayesian framework using the Gibbs sampler. We develop and score several forms of the ICOMP criterion of Bozdogan (1994, 2004) as our fitness function; to choose the number of component clusters, to choose the correct component covariance matrix structure among nine candidate covariance structures, and to select the optimal parameters and the best fitting mixture-model. We demonstrate our approach on simulated datasets and a real large data set, focusing on early detection of breast cancer. We show that our approach improves the probability of classification error over the existing methods.
68

Applying Localized Realized Volatility Modeling to Futures Indices

Fu, Luella 01 January 2011 (has links)
This thesis extends the application of the localized realized volatility model created by Ying Chen, Wolfgang Karl Härdle, and Uta Pigorsch to other futures markets, particularly the CAC 40 and the NI 225. The research attempted to replicate results though ultimately, those results were invalidated by procedural difficulties.
69

A Normal Truncated Skewed-Laplace Model in Stochastic Frontier Analysis

Wang, Junyi 01 May 2012 (has links)
Stochastic frontier analysis is an exciting method of economic production modeling that is relevant to hospitals, stock markets, manufacturing factories, and services. In this paper, we create a new model using the normal distribution and truncated skew-Laplace distribution, namely the normal-truncated skew-Laplace model. This is a generalized model of the normal-exponential case. Furthermore, we compute the true technical efficiency and estimated technical efficiency of the normal-truncated skewed-Laplace model. Also, we compare the technical efficiencies of normal-truncated skewed-Laplace model and normal-exponential model.
70

Assessing Changes in the Abundance of the Continental Population of Scaup Using a Hierarchical Spatio-Temporal Model

Ross, Beth E. 01 January 2012 (has links)
In ecological studies, the goal is often to describe and gain further insight into ecological processes underlying the data collected during observational studies. Because of the nature of observational data, it can often be difficult to separate the variation in the data from the underlying process or `state dynamics.' In order to better address this issue, it is becoming increasingly common for researchers to use hierarchical models. Hierarchical spatial, temporal, and spatio-temporal models allow for the simultaneous modeling of both first and second order processes, thus accounting for underlying autocorrelation in the system while still providing insight into overall spatial and temporal pattern. In this particular study, I use two species of interest, the lesser and greater scaup (Aythya affnis and Aythya marila), as an example of how hierarchical models can be utilized in wildlife management studies. Scaup are the most abundant and widespread diving duck in North America, and are important game species. Since 1978, the continental population of scaup has declined to levels that are 16% below the 1955-2010 average and 34% below the North American Waterfowl Management Plan goal. The greatest decline in abundance of scaup appears to be occurring in the western boreal forest, where populations may have depressed rates of reproductive success, survival, or both. In order to better understand the causes of the decline, and better understand the biology of scaup in general, a level of high importance has been placed on retrospective analyses that determine the spatial and temporal changes in population abundance. In order to implement Bayesian hierarchical models, I used a method called Integrated Nested Laplace Approximation (INLA) to approximate the posterior marginal distribution of the parameters of interest, rather than the more common Markov Chain Monte Carlo (MCMC) approach. Based on preliminary analysis, the data appeared to be overdispersed, containing a disproportionately high number of zeros along with a high variance relative to the mean. Thus, I considered two potential data models, the negative binomial and the zero-inflated negative binomial. Of these models, the zero-inflated negative binomial had the lowest DIC, thus inference was based on this model. Results from this model indicated that a large proportion of the strata were not decreasing (i.e., the estimated slope of the parameter was not significantly different from zero). However, there were important exceptions with strata in the northwest boreal forest and southern prairie parkland habitats. Several strata in the boreal forest habitat had negative slope estimates, indicating a decrease in breeding pairs, while some of the strata in the prairie parkland habitat had positive slope estimates, indicating an increase in this region. Additionally, from looking at plots of individual strata, it seems that the strata experiencing increases in breeding pairs are experiencing dramatic increases. Overall, my results support previous work indicating a decline in population abundance in the northern boreal forest of Canada, and additionally indicate that the population of scaup has increased rapidly in the prairie pothole region since 1957. Yet, by accounting for spatial and temporal autocorrelation in the data, it appears that declines in abundance are not as widespread as previously reported.

Page generated in 0.119 seconds