• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 60
  • 14
  • 11
  • 7
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 124
  • 124
  • 23
  • 23
  • 17
  • 14
  • 14
  • 14
  • 13
  • 13
  • 13
  • 12
  • 12
  • 11
  • 10
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
121

From models to data : understanding biodiversity patterns from environmental DNA data / Des modèles aux données : comprendre la structure de la biodiversité à partir de l'ADN

Sommeria-Klein, Guilhem 14 September 2017 (has links)
La distribution de l'abondance des espèces en un site, et la similarité de la composition taxonomique d'un site à l'autre, sont deux mesures de la biodiversité ayant servi de longue date de base empirique aux écologues pour tenter d'établir les règles générales gouvernant l'assemblage des communautés d'organismes. Pour ce type de mesures intégratives, le séquençage haut-débit d'ADN prélevé dans l'environnement (" ADN environnemental ") représente une alternative récente et prometteuse aux observations naturalistes traditionnelles. Cette approche présente l'avantage d'être rapide et standardisée, et donne accès à un large éventail de taxons microbiens jusqu'alors indétectables. Toutefois, ces jeux de données de grande taille à la structure complexe sont difficiles à analyser, et le caractère indirect des observations complique leur interprétation. Le premier objectif de cette thèse est d'identifier les modèles statistiques permettant d'exploiter ce nouveau type de données afin de mieux comprendre l'assemblage des communautés. Le deuxième objectif est de tester les approches retenues sur des données de biodiversité du sol en forêt amazonienne, collectées en Guyane française. Deux grands types de processus sont invoqués pour expliquer l'assemblage des communautés d'organismes : les processus "neutres", indépendants de l'espèce considérée, que sont la naissance, la mort et la dispersion des organismes, et les processus liés à la niche écologique occupée par les organismes, c'est-à-dire les interactions avec l'environnement et entre organismes. Démêler l'importance relative de ces deux types de processus dans l'assemblage des communautés est une question fondamentale en écologie ayant de nombreuses implications, notamment pour l'estimation de la biodiversité et la conservation. Le premier chapitre aborde cette question à travers la comparaison d'échantillons d'ADN environnemental prélevés dans le sol de diverses parcelles forestières en Guyane française, via les outils classiques d'analyse statistique en écologie des communautés. Le deuxième chapitre se concentre sur les processus neutres d'assemblages des communautés.[...] / Integrative patterns of biodiversity, such as the distribution of taxa abundances and the spatial turnover of taxonomic composition, have been under scrutiny from ecologists for a long time, as they offer insight into the general rules governing the assembly of organisms into ecological communities. Thank to recent progress in high-throughput DNA sequencing, these patterns can now be measured in a fast and standardized fashion through the sequencing of DNA sampled from the environment (e.g. soil or water), instead of relying on tedious fieldwork and rare naturalist expertise. They can also be measured for the whole tree of life, including the vast and previously unexplored diversity of microorganisms. Taking full advantage of this new type of data is challenging however: DNA-based surveys are indirect, and suffer as such from many potential biases; they also produce large and complex datasets compared to classical censuses. The first goal of this thesis is to investigate how statistical tools and models classically used in ecology or coming from other fields can be adapted to DNA-based data so as to better understand the assembly of ecological communities. The second goal is to apply these approaches to soil DNA data from the Amazonian forest, the Earth's most diverse land ecosystem. Two broad types of mechanisms are classically invoked to explain the assembly of ecological communities: 'neutral' processes, i.e. the random birth, death and dispersal of organisms, and 'niche' processes, i.e. the interaction of the organisms with their environment and with each other according to their phenotype. Disentangling the relative importance of these two types of mechanisms in shaping taxonomic composition is a key ecological question, with many implications from estimating global diversity to conservation issues. In the first chapter, this question is addressed across the tree of life by applying the classical analytic tools of community ecology to soil DNA samples collected from various forest plots in French Guiana. The second chapter focuses on the neutral aspect of community assembly.[...]
122

Introgression of genes from rape to wild turnip

Jenkins, Toni E. January 2005 (has links)
Introgression of genes from crops into ruderal populations is a multi-step process requiring sympatry, synchronous flowering, chromosomal compatibility, successful pollination and development of the zygote, germination, establishment and reproduction of hybrid progeny. The goal of this thesis was to generate data on as many steps in this process as possible and integrate them into a predictive statistical model to estimate the likelihood of successful introgression under a range of scenarios. Rape (Brassica napus) and wild turnip (B. rapa var. oleifera) were used as a model system. A homozygous dominant mutation in the rape genome conferring herbicide resistance provided a convenient marker for the study of introgression. Potential differences between wild turnip populations from a wide range of geographic locations in New Zealand were examined. Hand pollination established the genetic compatibility of rape and wild turnip and a high potential for gene introgression from rape to wild turnip. Interspecific hybrids were easily generated using wild turnip as the maternal plant, with some minor differences between wild turnip populations. The frequency of successful hybridisation between the two species was higher on the lower raceme. However, the upper raceme produced more dormant interspecific hybrid seed. Field trials, designed to imitate rare rape crop escapes into the ruderal environment, examined the ability of rare rape plants to pollinate wild turnip plants over four summers. At a ratio of 1 rape plant for every 400 wild turnip plants, the incidence of interspecific hybridisation was consistently low (<0.1 to 2.1 % of total seed on wild turnip plants). There was a significant year effect with the first season producing significantly more seed and a greater frequency of interspecific hybrid progeny than the other years. The frequency of interspecific hybrid progeny increases when the ratio of rape: wild turnip plant numbers increases. The relative importance of anemophily and entomophily in the production of interspecific hybrids was examined. Wild turnip plants produced twice as many seeds with bee pollination relative to wind pollination. However, the frequency of interspecific hybrids under wind pollination was nearly twice that for bee pollination. Light reflectance patterns under UV light revealed a marked difference between wild turnip and rape flowers compared to near identical appearance under visible light. The data indicates that bees are able to distinguish between rape and wild turnip flowers and exhibit floral constancy when foraging among populations with these two species. Hybrid survival in the seed bank, germination and seedling establishment in the field are important components of fitness. Seed banks established in the soil after the field trials described above germinated in subsequent spring seasons. The predominantly brassica weed populations were screened for herbicide resistance and the numbers of interspecific hybrids germinating compared to the original frequency in the field trial results. Frequency of interspecific hybrids was reduced in the populations compared to the original seed deposit. Seed with a known frequency of interspecific hybrid seed was sown in a separate trial, and the frequency of interspecific hybrids compared at 0, 4, 6, and 8 weeks after sowing. Poor germination resulted limited competition between seedlings, however the frequency of interspecific hybrids declined over time indicating low plant fitness. There were no significant population effects on any parameters tested. Interspecific hybrids grown in a glasshouse were backcrossed to the parental species and selfed within the plant and within populations. Pollen from the interspecific hybrids was found to have markedly reduced fertility. Interspecific hybrid plants had low female fertility, with the majority (88%) of the pollinated flowers aborting the siliques. Of the remaining siliques, most (98%) had only one to three seeds per silique. Inheritance of the herbicide resistance gene was regular in backcrosses but highly skewed following self pollination with an excess of herbicide-sensitive progeny. Production of a stochastic predictive model integrated the information acquired over the practical work phase of this thesis and utilised the capabilities of @risk, a new application of a risk analysis tool. The three outputs examined were the number of flowering plants resulting from backcrosses to rape and wild turnip and self pollination of the interspecific hybrid progeny. Five scenarios were modelled and all demonstrated the high likelihood of introgression failure in this system. In all scenarios, >75% of simulations resulted in no interspecific hybrid progeny surviving to flowering in the third generation. In all scenarios, and for all three outputs, the seed set on the interspecific hybrids of the second generation was the major factor that limited the number interspecific hybrid progeny surviving to flowering in the third generation.
123

GENETIC ARCHITECTURE OF WELFARE INDICATORS AND IMPLEMENTATION OF SINGLE-STEP GENOMIC PREDICTIONS IN BEEF CATTLE POPULATIONS

Amanda Botelho Alvarenga (14221799) 07 December 2022 (has links)
<p>Breeding for improved animal welfare is paramount for increasing the long-term sustainability of the animal food industry. In this context, the main objectives of this dissertation were to understand the genetic and genomic background of welfare indicators in livestock and evaluate the feasibility of single-step Genomic Best Linear Unbiased Prediction (ssGBLUP) for performing genomic selection in beef cattle. This dissertation includes five studies. First, we aimed to test and identify an optimal ssGBLUP scenario for crossbreeding schemes. We simulated multiple populations differing based on the genetic background of the trait, and then we tested alternative models, such as multiple-trait weighted ssGBLUP. Even though more elaborated scenarios were evaluated, a single-trait ssGBLUP approach was recommended when genetic correlation across populations were higher than 0.70. The goal of the second study was to identify genomic regions controlling behavior traits that are conserved across livestock species. We systematically reviewed genomic regions associated with behavioral indicators in beef and dairy cattle, pigs, and sheep. The genomic regions identified in this study were located in genes previously reported controlling human behavioral, neural, and mental disorders. In the third study we used a large dataset (675,678 records) from North American Angus cattle to investigate the genetic background of temperament, a behavioral indicator, recorded on one-year-old calves, and provide the models and protocols for implementing genomic selection. We reported a heritability estimate equal to 0.38 for yearling temperament, and it was, in general, genetically favorably correlated with other productivity and fertility traits. Candidate genomic regions controlling yearling temperament were also identified. The fourth study was based on temperament recorded on North American Angus cows from 2 to 15 years of age (797,187 records). The goal was to understand the genetic and genomic background of temperament across the animal’s lifetime. By fitting a random regression model, we observed that temperament is highly genetically correlated across time. However, animals have differential learning and behavioral plasticity (LBP; changes of the phenotype overtime), although the LBP heritability is low. In our last study we evaluated foot scores (foot angle, FA; and claw set, CS) in American (US) and Australian (AU) Angus cattle aiming to assess the genetic and genomic background of foot scores and investigate the feasibility of performing an across-country genomic evaluation (~1.15 million animals genotyped). Foot scores are heritable (heritability from 0.22 to 0.27), and genotype-by-environment interaction was observed between US and AU Angus populations (genetic correlation equal to 0.61 for FA and 0.76 for CS). An across-country genomic prediction outperformed within-country evaluations in terms of predictivity ability (bias, dispersion, and validation accuracy) and theoretical accuracies. We have also identified genes associated with FA and CS previously reported in human’s bone structure and repair mechanism. In conclusion, this dissertation presents a comprehensive genetic and genomic characterization of welfare indicators (temperament and foot scores) in (inter)national livestock populations. </p>
124

The Legislative Politics and Public Attitude on Immigrants and Immigration Policies Amid Health Crises

Afzal, Muhammad Hassan Bin 30 June 2023 (has links)
No description available.

Page generated in 0.1236 seconds