Spelling suggestions: "subject:"statistisk modell"" "subject:"statistiska modell""
1 |
Lärares möjligheter att uppfylla det kompensatoriska uppdraget i skolan / Teachers' opportunities to fulfill the compensatory mission in schoolPasho, Rezan, Andreas, Nejdesjö January 2023 (has links)
Syftet med detta arbete har varit att undersöka vilka möjligheter och utmaningar som samhällskunskapslärare upplever i arbetet med det kompensatoriska uppdraget. Vi har tagit del av mycket forskning kring elevers olika förutsättningar i skolan, men en avsaknad av vad lärarna kan göra för att kompensera för detta. Därför valde vi just denna inriktning och intervjuade lärare på två skolor i olika sociala områden med ett utbildningssociologiskt perspektiv. Vi använde oss av semistrukturerade intervjuer som i sin tur bidragit med kunskaper kring de olika skillnaderna i arbetet med det kompensatoriska uppdraget på respektive skola. Resultatet visade på tydliga skillnader mellan de två skolorna som är belägna i olika socioekonomiska områden. Utmaningar som tidigare forskning har konstaterat, exempelvis elevers socioekonomiska bakgrund och dess betydelse för skolprestationer samt segregationens betydelse för homogena klasser, blev väldigt synliga. Skolan som låg i ett socialt utsatt område hade en överbelastning av elever som var i behov av kompensatoriskt stöd medan den andra skolan hade andra former av utmaningar som lärarna fick ta itu med. I vilket socialt område som skolan var belägen och vilken elevgruppens socioekonomiska bakgrund hade alltså betydelse för lärarens arbete med uppdraget. Trots detta visade undersökningen även att det finns många möjligheter att uppfylla det kompensatoriska uppdraget, exempelvis genom olika verktyg lärare kan använda sig av.
|
2 |
Predicting Customer Churn in E-commerce Using Statistical Modeling and Feature Importance Analysis : A Comparison of Random Forest and Logistic Regression ApproachesRudälv, Amanda January 2023 (has links)
While operating in online markets offers opportunities for expanded assortment and convenience, it also poses challenges such as increased competition and the need to build personal relationships with customers. Customer retention be- comes crucial in maintaining a successful business, emphasizing the importance of understanding customer behavior. Traditionally, customer behavior analysis has focused on transactional behavior, such as purchase frequency and spending amounts. However, there has been a shift towards non-transactional behavior, driven by the popularity of loyalty programs that reward customers beyond trans- actions and aim to make customers feel appreciated and included, regardless of their spending power. This study is conducted at a global retailer with the aim of enhancing the under- standing of how non-transactional customer behavior influences customer churn. The approach in this study is to understand such behavior by developing a statis- tical model and to analyze statistical approaches of feature importance. Two types of approaches for statistical modeling, each with four variations, are assessed: (1) Random forest; and (2) Logistic regression. Furthermore, three different feature importance methods are considered; (1) Gini importance; (2) Permutation impor- tance and (3) Coefficient importance. The results showed that this approach can be used to analyze customer behavior and gain a better understanding of the driving factors for churn. Furthermore, the results showed that random forest approaches outperform logistic regression. With the definition of churn constructed in this study, the most important factors that affect the probability of churn are the customer’s number of sessions and inter session interval. / Att bedriva e-handel erbjuder inte enbart möjligheter för utökat sortiment och bekvämlighet, utan leder även till ökad konkurrens och ett ökat behov av att bygga relationer med kunder. Kundlojalitet är därmed avgörande för att upprätthålla en framgångsrik verksamhet, och betonar vikten av att förstå kundernas beteende. Traditionellt har analyser av kundbeteende främst bedrivits med fokus på transak- tionellt beteende, såsom frekvens eller totalbelopp för köp. På senare tid har allt mer fokus lagts på icke-transaktionellt beteende, på grund av införandet av lo- jalitetsprogram som belönar kunder bortom transaktioner, med målet att kunder ska känna sig uppskattade och inkluderade, oavsett köpkraft. Denna studie genomförs hos ett globalt detaljhandelsföretag med målet att utöka förståelsen för hur icke-transaktionellt kundbeteende påverkar kundbortfall. För att uppnå detta konstrueras en statistisk modell som utnyttjas för att med hjälp av statistiska metoder analysera signifikans hos variabler. Två kategorier av statis- tiska modeller undersöks; (1) Random forest och (2) Logistisk regression. Utöver detta används tre olika metoder för att analysera signifikans hos variabler; (1) Gini-betydelse; (2) Permutationsbetydelse; och (3) Koefficientbetydelse. Resultatet visar att studiens tillvägagångssätt kan användas för att analysera kund- beteende och nå ökad förståelse för vad som driver kundbortfall. Vidare visar re- sultatet att random forest-modeller överträffar modeller baserade på logistisk re- gression. Baserat på den definition av kundbortfall som definierats i denna studie är de viktigaste faktorerna som påverkar sannolikheten för kundbortfall, kundens antal sessioner och intervallet mellan kundens sessioner.
|
Page generated in 0.0683 seconds