• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 33
  • 4
  • 3
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 54
  • 54
  • 33
  • 17
  • 11
  • 10
  • 9
  • 7
  • 7
  • 7
  • 7
  • 6
  • 6
  • 6
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Massive Star Geriatrics

Khan, Rubab January 2014 (has links)
No description available.
12

Hydrodynamic Modeling of Massive Star Interiors

Meakin, Casey Adam January 2006 (has links)
In this thesis, the hydrodynamics of massive star interiors are explored. Our primary theoretical tool is multi-dimensional hydrodynamic simulation using realistic initial conditions calculated with the one-dimensional stellar evolution code, TYCHO. The convective shells accompanying oxygen and carbon burning are examined, including models with single as well as multiple, simultaneously burning shells. A convective core during hydrogen burning is also studied in order to test the generality of the flow characteristics. Two and three dimensional models are calculated. We analyze the properties of turbulent convection, the generation of internal waves in stably stratified layers, and the rate and character of compositional mixing at convective boundaries.
13

Multi-dimensional Hydrodynamics of Core-collapse Supernovae

Murphy, Jeremiah Wayne January 2008 (has links)
Core-collapse supernovae are some of the most energetic events in the Universe, they herald the birth of neutron stars and black holes, are a major site for nucleosynthesis, influence galactic hydrodynamics, and trigger further star formation. As such, it is important to understand the mechanism of explosion. Moreover, observations imply that asymmetries are, in the least, a feature of the mechanism, and theory suggests that multi-dimensional hydrodynamics may be crucial for successful explosions. In this dissertation, we present theoretical investigations into the multi-dimensional nature of the supernova mechanism. It had been suggested that nuclear reactions might excite non-radial g-modes (the ε-mechanism) in the cores of progenitors, leading to asymmetric explosions. We calculate the eigenmodes for a large suite of progenitors including excitation by nuclear reactions and damping by neutrino and acoustic losses. Without exception, we find unstable g-modes for each progenitor. However, the timescales for growth are at least an order of magnitude longer than the time until collapse. Thus, the ε-mechanism does not provide appreciable amplification of non-radial modes before the core undergoes collapse. Regardless, neutrino-driven convection, the standing accretion shock instability, and other instabilities during the explosion provide ample asymmetry. To adequately simulate these, we have developed a new hydrodynamics code, BETHE-hydro that uses the Arbitrary Lagrangian-Eulerian (ALE) approach, includes rotational terms, solves Poisson’s equation for gravity on arbitrary grids, and conserves energy and momentum in its basic implementation. By using time dependent arbitrary grids that can adapt to the numerical challenges of the problem, this code offers unique flexibility in simulating astrophysical phenomena. Finally, we use BETHE-hydro to investigate the conditions and criteria for supernova explosions by the neutrino mechanism. We find that a critical luminosity/ mass-accretion-rate condition distinguishes non-exploding from exploding models in hydrodynamic 1D and 2D simulations. Importantly, the critical luminosity for 2D simulations is found to be ∼70% of the critical luminosity for 1D simulations. We identify the specifics ofmulti-dimensional hydrodynamic simulations that enable explosions at lower neutrino luminosities in 2D and discuss how these results might foreshadow successful explosions by eventual 3D radiation-hydrodynamic simulations.
14

Modeling close stellar interactions using numerical and analytical techniques

Passy, Jean-Claude 27 February 2013 (has links)
The common envelope (CE) interaction is a still poorly understood, yet critical phase of evolution in binary systems that is responsible for various astrophysical classes and phenomena. In this thesis, we use various approaches and techniques to investigate different aspects of this interaction, and compare our models to observations. We start with a semi-empirical analysis of post-CE systems to predict the outcome of a CE interaction. Using detailed stellar evolutionary models, we revise the α equation and calculate the ejection efficiency, α, both from observations and simulations consistently. We find a possible anti-correlation between α and the secondary-to- primary mass ratio, suggesting that the response of the donor star might be important for the envelope ejection. Secondly, we present a survey of three-dimensional hydrodynamical simulations of the CE evolution using two different numerical techniques, and find very good agreement overall. However, most of the envelope of the donor is still bound at the end of the simulations and the final orbital separations are larger than the ones of young observed post-CE systems. Despite these two investigations, questions remain about the nature of the extra mechanism required to eject the envelope. In order to study the dynamical response of the donor, we perform one-dimensional stellar evolution simulations of stars evolving with mass loss rates from 0.001 up to a few M⊙/yr. For mass-losing giant stars, the evolution is dynamical and not adiabatic, and we find no significant radius increase in any case. Finally, we investigate whether the substellar companions recently observed in close orbits around evolved stars could have survived the CE interaction, and whether they might have been more massive prior to their engulfment. Using an analytical prescription for the disruption of gravitationally bound objects by ram pressure stripping, we find that the Earth-mass planets around KIC 05807616 could be the remnants of a Jovian-mass planet, and that the other substellar objects are unlikely to have lost significant mass during the CE interaction. / Graduate
15

Populating the galaxy with pulsars

Kiel, Paul D. January 2009 (has links)
Prior to this thesis no serious attempt has been made within binary system population synthesis research to model the selection effects of observational surveys. Conversely, many pulsar population models have accounted for radio survey selection effects but not detailed binary evolution. Such modelling becomes especially important when comparing theory directly to observations. In examining the factors that influence pulsar evolution, both in binary systems and as single stellar objects, we have bridged this existing gap between these two research fields. This thesis populates a model Galaxy with binary systems and evolves the population forward in time. A prediction of the Galactic pulsar population characteristics is produced, at the assumed age of the Galaxy, after we have accounted for detailed changes in stellar and binary evolution and Galactic kinematics. Synthetic observational surveys mimicking a variety of radio pulsar surveys are then performed on this population. The population synthesis synthetic survey (PS3) package is comprised of three components: stellar/binary evolution (binpop), Galactic kinematics (binkin), and survey selection effects (binsfx). The resultant pulsar populations, assuming the magnetic-dipole decay and accretion induced magnetic decay models, can compare well to many of the detected pulsar population characteristics. The comparisons between models and observations have lead to the conclusions described below. The models exclude short (∼ 5 Myr) timescales for standard pulsar exponential field decay and find that ablation of low-mass millisecond pulsar companions can redress both the lack of synthetic isolated pulsars and their excessive distances in height from the Galactic plane. Coalescing double neutron star and collapsar Galactic populations, evolved owing to standard binary evolutionary assumptions, are too centrally concentrated owing to the typical merger timescale of double neutron stars being a few million years. Dwarf galaxy models of coalescing double neutron stars and collapsars produce equally good agreement with long gamma-ray burst projected distances. Therefore our models cannot provide any distinction between which of these populations (coalescing double neutron stars or collapsars) are the progenitor of long gamma-ray bursts. The Galactic birth rate of double neutron star binaries in our model is 8.2 Myr−1 and the merger rate is 6.8 Myr−1. Scintillation is found to be an important aspect in the detection of low flux density pulsars. The assumed pulsar luminosity law is found to require an inverse trend with spin period and our favoured models suggest that there are one million radio active pulsars within the Galaxy.
16

Dusty discs around evolved stars

Lykou, Foteini January 2013 (has links)
From the main sequence onwards, stars of intermediate masses (1-8 Solar masses) eject a large portion of their mass with rates as high as 0.0001 Solar masses per year during their transition through the Asymptotical Giant Branch (AGB) stage. The outflows are shaped by the same mechanisms that shape the ejecta, which in turn appear to depart from spherical symmetry as early as the AGB stage. The ejecta are then evolving into asymmetrical structures. Stars like that are giant factories of dust, responsible for the enrichment of their surrounding Galactic medium in metals heavier than helium. Depending on their abundances during the AGB stage, the stars are either oxygen-rich or carbon-rich, and as such, the dust produced in their atmospheres is either O-rich or C-rich. The chemical composition of the ejecta, indicates the stellar chemistry at the moment of ejection. The disruption of the spherical symmetry of the mass loss can be caused by fast rotation, stellar magnetic fields or binarity, the latter being the most efficient and favourable mechanism. Such mechanisms can lead to the creation of circumstellar, equatorial, dusty structures, like discs, torii or spirals. Due to their small relative sizes, compared to their surrounding nebulae, they can be studied at best with the use of infrared interferometric techniques. We report the discovery of three such structures in sources at three different evolutionary stages, respectively, with the use of single- and multi-aperture interferometry. In the C-rich AGB star V Hya we imaged via aperture masking in the near-infrared, a complex and possibly orbiting structure, which is embedded within the star's molecular torus. Our MIDI observations in the mid-infrared have revealed, a silicate disc within the symbiotic nebula M2-9 that is currently being shaped by the central binary system within its core, and a C-rich disc-like structure in the born-again star Sakurai's Object, that is also aligned to an asymmetry found in its surrounding planetary nebula. Finally, we compare the properties of the structures found here with those found in the literature in order to establish a relation between late stellar evolution and the existence of dusty structures.
17

Rotation in Red Giants

Tayar, Jamie Nicole 07 November 2018 (has links)
No description available.
18

Using Modern Stellar Observables to Constrain Stellar Parameters and the Physics of the Stellar Interior

van Saders, Jennifer Lynn 07 October 2014 (has links)
No description available.
19

Improving the Local Distance Scale from Empirically Calibrated Stellar Isochrones

An, Deokkeun 11 September 2008 (has links)
No description available.
20

Construction of a Comprehensive Picture of Non-thermal Emissions from Various Types of Supernova Remnants / 超新星残骸からの非熱的放射の統一的描像の構築

Yasuda, Haruo 23 March 2022 (has links)
京都大学 / 新制・課程博士 / 博士(理学) / 甲第23706号 / 理博第4796号 / 新制||理||1686(附属図書館) / 京都大学大学院理学研究科物理学・宇宙物理学専攻 / (主査)講師 LEE Shiu Hang, 教授 嶺重 慎, 准教授 前田 啓一 / 学位規則第4条第1項該当 / Doctor of Science / Kyoto University / DFAM

Page generated in 0.0988 seconds