Spelling suggestions: "subject:"patellar evolution"" "subject:"mstellar evolution""
51 |
A search for pulsating B-type variable stars in the southern open clusters NGC 6204 and Hogg 22 / Jacobus Johannes (Jaco) MentzMentz, Jacobus Johannes January 2013 (has links)
The theory of stellar evolution and stellar structure relies on the observation of stars
in di erent phases of their evolutionary cycle. The relation between observations and
theory can be strengthened by obtaining observational data of a large sample of stars in a particular evolutionary phase. The search for Cephei stars, as conducted in this study,
can contribute to the sample of known Cephei stars, where these interesting stars are
massive non-supergiant early B-type stars, displaying pulsating behaviour which is not
well understood.
Stars tend to form in clusters where it can therefore be expected that young massive
stars can be found in open clusters. For this reason two young southern open clusters
were observed in order to search for B-type pulsating stars. The region of NGC 6204
and Hogg 22 was observed over a period of thirteen nights in Johnson B, V and I bands.
NGC 6204 is believed to be the oldest cluster of the two at a distance of 0.8 kpc while the
much younger Hogg 22 is more distant at 2.8 kpc. These two open clusters are located
6 arcminutes apart which made it possible to observe them simultaneously with a 12.8
12.8 arcminute eld of view. The observations were done with the newly installed 1600
telescope of the North-West University, South Africa.
In order to do a variability search, periodic stars need to be identi ed from the cluster
data, where a typical data set may contain thousands of scienti c images. In addition
to the main motivation for this study, a pipeline was created in order to automate the
photometry and data reduction processes. A Lomb-Scargle transform was applied to the
stellar light curves in order to identify periodic sources. 354 signi cantly periodic stars
were identi ed from the 3182 observed stars. Amongst them, two new possible Cephei
stars were found together with a possible slowly pulsating B star (SPB), and numerous
eclipsing binary systems.
By using photometry of this region obtained by Forbes & Short (1996), instrumental
magnitudes were transformed to a standard system in order to compare photometry
results. From the constructed colour magnitude diagram of the two clusters, it could be
seen that some stars, indicated by Forbes & Short (1996) to be cluster members, were
in fact eld stars belonging to neither cluster. The reduction and photometry pipeline was implemented successfully on the data set,
which also highlighted the importance of instrumentation and correct data analysis
procedures. Possible improvements were identi ed in order to overcome di culties experienced
during this study. / Thesis (MSc (Space Physics))--North-West University, Potchefstroom Campus, 2013
|
52 |
A search for pulsating B-type variable stars in the southern open clusters NGC 6204 and Hogg 22 / Jacobus Johannes (Jaco) MentzMentz, Jacobus Johannes January 2013 (has links)
The theory of stellar evolution and stellar structure relies on the observation of stars
in di erent phases of their evolutionary cycle. The relation between observations and
theory can be strengthened by obtaining observational data of a large sample of stars in a particular evolutionary phase. The search for Cephei stars, as conducted in this study,
can contribute to the sample of known Cephei stars, where these interesting stars are
massive non-supergiant early B-type stars, displaying pulsating behaviour which is not
well understood.
Stars tend to form in clusters where it can therefore be expected that young massive
stars can be found in open clusters. For this reason two young southern open clusters
were observed in order to search for B-type pulsating stars. The region of NGC 6204
and Hogg 22 was observed over a period of thirteen nights in Johnson B, V and I bands.
NGC 6204 is believed to be the oldest cluster of the two at a distance of 0.8 kpc while the
much younger Hogg 22 is more distant at 2.8 kpc. These two open clusters are located
6 arcminutes apart which made it possible to observe them simultaneously with a 12.8
12.8 arcminute eld of view. The observations were done with the newly installed 1600
telescope of the North-West University, South Africa.
In order to do a variability search, periodic stars need to be identi ed from the cluster
data, where a typical data set may contain thousands of scienti c images. In addition
to the main motivation for this study, a pipeline was created in order to automate the
photometry and data reduction processes. A Lomb-Scargle transform was applied to the
stellar light curves in order to identify periodic sources. 354 signi cantly periodic stars
were identi ed from the 3182 observed stars. Amongst them, two new possible Cephei
stars were found together with a possible slowly pulsating B star (SPB), and numerous
eclipsing binary systems.
By using photometry of this region obtained by Forbes & Short (1996), instrumental
magnitudes were transformed to a standard system in order to compare photometry
results. From the constructed colour magnitude diagram of the two clusters, it could be
seen that some stars, indicated by Forbes & Short (1996) to be cluster members, were
in fact eld stars belonging to neither cluster. The reduction and photometry pipeline was implemented successfully on the data set,
which also highlighted the importance of instrumentation and correct data analysis
procedures. Possible improvements were identi ed in order to overcome di culties experienced
during this study. / Thesis (MSc (Space Physics))--North-West University, Potchefstroom Campus, 2013
|
53 |
Asteroseismic inferences from red-giant starsThemeẞl, Nathalie 28 September 2018 (has links)
No description available.
|
54 |
Caractérisation et modélisation de l’évolution spectrale des étoiles naines blanches chaudesBédard, Antoine 07 1900 (has links)
Cette thèse présente une étude empirique et théorique approfondie de l'évolution spectrale des étoiles naines blanches, avec un accent particulier sur les naines blanches chaudes. La composition atmosphérique (et donc l'apparence spectrale) de ces cadavres stellaires peut changer drastiquement avec le temps à mesure qu'ils se refroidissent. Ce phénomène est généralement interprété comme le résultat d'une compétition entre divers mécanismes de transport des éléments dans l'enveloppe stellaire (tels que la diffusion, la convection, les vents et l'accrétion), mais demeure mal compris à plusieurs égards. Il est impératif de remédier à cette situation pour être en mesure d'exploiter le potentiel immense des naines blanches pour notre compréhension du passé de la Galaxie.
Pour mieux caractériser l'incidence de l'évolution spectrale, nous effectuons tout d'abord une analyse spectroscopique exhaustive de près de 2000 naines blanches chaudes (Teff > 30,000 K) observées par le relevé SDSS. Nous déterminons les propriétés atmosphériques (notamment la température effective et la composition de surface) de ces objets à l'aide d'un nouvel ensemble de modèles d'atmosphère calculé spécifiquement à cet effet. En examinant la fréquence relative des étoiles riches en hydrogène et riches en hélium en fonction de la température, nous obtenons pour la première fois un portrait empirique détaillé de l'évolution spectrale des naines blanches chaudes. Plus spécifiquement, nous déduisons (1) qu'environ une étoile sur quatre arrive sur la séquence de refroidissement avec une atmosphère d'hélium, et (2) qu'environ deux tiers de ces objets développent ultérieurement une atmosphère d'hydrogène. En outre, nous accordons une attention particulière aux naines blanches hybrides (qui montrent à la fois des traces d'hydrogène et d'hélium) de notre échantillon et à ce que ces objets distinctifs nous apprennent sur l'évolution spectrale.
Nous étudions ensuite l'évolution spectrale d'un point de vue théorique en modélisant les transformations chimiques qui s'opèrent dans les naines blanches. Pour ce faire, nous utilisons le code d'évolution stellaire STELUM, qui inclut un traitement cohérent et réaliste du transport des éléments et nous permet donc de réaliser les simulations numériques d'évolution spectrale les plus sophistiquées à ce jour. Nous modélisons la diffusion de l'hydrogène résiduel dans une enveloppe d'hélium à haute température, qui mène ultimement à la formation d'une atmosphère d'hydrogène. Nous simulons également le mélange convectif de cette couche superficielle d'hydrogène avec la couche sous-jacente d'hélium à basse température, qui produit à nouveau une surface dominée par l'hélium. En outre, nous étudions le transport du carbone dans les étoiles riches en hélium, incluant à la fois le tri gravitationnel à haute température et le dragage convectif à basse température.
Ces calculs donnent lieu à plusieurs résultats astrophysiques d'intérêt. Nous obtenons notamment une contrainte inédite sur la quantité d'hydrogène résiduel contenue dans les naines blanches chaudes dominées par l'hélium. Nous démontrons aussi que la bifurcation observée dans le diagramme couleur-magnitude des naines blanches découvertes par le satellite Gaia est une signature du processus de mélange convectif à basse température. Par ailleurs, nos modèles fournissent de précieuses informations sur les propriétés des étoiles polluées par le carbone, en particulier sur leur masse et leur zone convective. Enfin, le résultat le plus important de cette thèse est la résolution définitive du problème le plus sérieux de la théorie de l'évolution spectrale, soit le problème de l'origine de l'hydrogène à la surface des naines blanches de type DBA. / This thesis presents an in-depth empirical and theoretical study of the spectral evolution of white dwarf stars, with a particular focus on hot white dwarfs. The atmospheric composition (and thus the spectral appearance) of these stellar remnants can change drastically over time as they cool. This phenomenon is generally interpreted as the result of an interplay between various element transport mechanisms in the stellar envelope (such as diffusion, convection, winds, and accretion), but remains poorly understood in several respects. It is imperative to remedy this situation to be able to exploit the immense potential of white dwarfs for our understanding of the past of the Galaxy.
To better characterize the incidence of spectral evolution, we first carry out an exhaustive spectroscopic analysis of nearly 2000 hot white dwarfs (Teff > 30,000 K) observed by the SDSS survey. We determine the atmospheric properties (in particular the effective temperature and surface composition) of these objects using a new set of model atmospheres calculated specifically for this purpose. By examining the relative frequency of hydrogen-rich and helium-rich stars as a function of temperature, we obtain for the first time a detailed empirical picture of the spectral evolution of hot white dwarfs. More specifically, we infer (1) that about one in four stars enters the cooling sequence with a helium atmosphere, and (2) that about two-thirds of these objects eventually develop a hydrogen atmosphere. Furthermore, we pay special attention to the hybrid white dwarfs (which exhibit traces of both hydrogen and helium) in our sample and to what can be learned about spectral evolution from these distinctive objects.
We then study spectral evolution from a theoretical point of view by modeling the chemical transformations that take place in white dwarfs. To do this, we use the stellar evolution code STELUM, which includes a consistent and realistic treatment of element transport and therefore allows us to perform the most sophisticated numerical simulations of spectral evolution to date. We model the diffusion of residual hydrogen in a helium envelope at high temperature, which ultimately leads to the formation of a hydrogen atmosphere. We also simulate the convective mixing of this superficial hydrogen layer with the underlying helium layer at low temperature, which once again produces a helium-dominated surface. Furthermore, we study the transport of carbon in helium-rich stars, including both gravitational settling at high temperature and convective dredge-up at low temperature.
These calculations give rise to several astrophysical results of interest. In particular, we obtain an unprecedented constraint on the amount of residual hydrogen contained within hot helium-dominated white dwarfs. We also demonstrate that the bifurcation observed in the color-magnitude diagram of white dwarfs discovered by the Gaia satellite is a signature of the convective mixing process at low temperature. Furthermore, our models provide valuable information on the properties of carbon-polluted stars, in particular on their mass and convective zone. Finally, the most important result of this thesis is the definitive resolution of the most serious problem of the theory of spectral evolution, namely the problem of the origin of hydrogen at the surface of DBA-type white dwarfs.
|
Page generated in 0.0841 seconds