• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 4
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 12
  • 12
  • 5
  • 5
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Stereoscopic depth axis interaction: A study of performance and engagement in stereoscopic 3D games.

Zerebecki, Christopher Ryan 12 February 2014 (has links)
Game developers strive to maximize immersion and engagement, to emotionally involve the audience in their material. One technique used to increase engagement is the development of new technologies, such as Stereoscopic 3D. Stereoscopic 3D (S3D) creates the impression of depth (stereopsis) in at images by providing additional binocular depth cues, such as convergence and binocular disparity. In this thesis, we explore the effects that S3D has on the player experience in an attempt to uncover design methodologies that can help game developers develop more effective content. Three experiments were designed and conducted to examine the effects S3D has on player experience and game design: i) Engagement in Stereoscopic 3D Games, ii) S3D Depth- Axis Interaction for Video Games: Performance and Engagement, iii) Depth Representation and Player Performance with Depth-Axis Interactivity. We hypothesized that S3D technology would increase immersion and engagement, and new mechanics that exploit the depth axis would be effective. The results of these studies suggest that S3D does not increase user engagement, and is consistent with prior research that suggest the impact of S3D is dependent on the game. They also demonstrate that developers can design unique experiences in stereoscopic 3D, but there may be additional ways to represent depth. The results suggest developers need to adjust the difficulty of their game when including stereoscopic 3D, depending on the interactions of their game. It is our recommendation that developers continue to explore the affordances offered by stereoscopic 3D to create unique experiences, but its inclusion is dependent on their specific game.
2

Applied statistical modeling of three-dimensional natural scene data

Su, Che-Chun 27 June 2014 (has links)
Natural scene statistics (NSS) have played an increasingly important role in both our understanding of the function and evolution of the human vision system, and in the development of modern image processing applications. Because depth/range, i.e., egocentric distance, is arguably the most important thing a visual system must compute (from an evolutionary perspective), the joint statistics between natural image and depth/range information are of particular interest. However, while there exist regular and reliable statistical models of two-dimensional (2D) natural images, there has been little work done on statistical modeling of natural luminance/chrominance and depth/disparity, and of their mutual relationships. One major reason is the dearth of high-quality three-dimensional (3D) image and depth/range database. To facilitate research progress on 3D natural scene statistics, this dissertation first presents a high-quality database of color images and accurately co-registered depth/range maps using an advanced laser range scanner mounted with a high-end digital single-lens reflex camera. By utilizing this high-resolution, high-quality database, this dissertation performs reliable and robust statistical modeling of natural image and depth/disparity information, including new bivariate and spatial oriented correlation models. In particular, these new statistical models capture higher-order dependencies embedded in spatially adjacent bandpass responses projected from natural environments, which have not yet been well understood or explored in literature. To demonstrate the efficacy and effectiveness of the advanced NSS models, this dissertation addresses two challenging, yet very important problems, depth estimation from monocular images and no-reference stereoscopic/3D (S3D) image quality assessment. A Bayesian depth estimation framework is proposed to consider the canonical depth/range patterns in natural scenes, and it forms priors and likelihoods using both univariate and bivariate NSS features. The no-reference S3D image quality index proposed in this dissertation exploits new bivariate and correlation NSS features to quantify different types of stereoscopic distortions. Experimental results show that the proposed framework and index achieve superior performance to state-of-the-art algorithms in both disciplines. / text
3

Crosstalk in Stereoscopic LCD 3-D Systems

Feng, Hsin-Chang January 2015 (has links)
Stereoscopic 3-D has received considerable attention over the last few decades. Since a stereoscopic 3-D pair includes two 2-D images together, the amount of data for an uncompressed stereo image is double compared to that for an uncompressed 2-D image. Thus efficient compression techniques are of paramount importance. However, crosstalk effect is an inherent perceivable problem in current 3-D display technologies. It can lead not only to degradation in the perceived quality of 3-D images, but also to discomfort in some individuals. Correspondingly, when crosstalk occurs, the compression artifacts in a compressed stereo pair can be perceived, despite the fact that such artifacts are imperceptible in individual left and right images. This dissertation proposes a methodology for visually lossless compression of monochrome stereoscopic 3-D images in which crosstalk effect is carefully considered. In the proposed methodology for visually lossless compression of monochrome stereoscopic 3-D images, visibility thresholds are measured for quantization distortion in JPEG2000 to conceal perceivable compression artifacts. These thresholds are found to be functions of not only spatial frequency, but also of wavelet coefficient variance, as well as the gray level in both the left and right images. In order to avoid a daunting number of measurements of visibility thresholds during subjective experiments, a model for visibility thresholds is developed. The left image and right image of a stereo pair are then compressed jointly using the visibility thresholds obtained from the proposed model to ensure that quantization errors in each image are imperceptible to both eyes. This methodology is then demonstrated via a 3-D stereoscopic liquid crystal display (LCD) system with an associated viewing condition. The resulting images are visually lossless when displayed individually as 2-D images, and also when displayed in stereoscopic 3-D mode. In order to have better perceptual quality of stereoscopic 3-D images, hardware based techniques have been used to reduce crosstalk in 3-D stereoscopic display systems. However, crosstalk is still readily apparent in some 3-D viewing systems. To reduce crosstalk remains after hardware crosstalk compensation, a methodology for crosstalk compensation accomplished via image processing is provided in this dissertation. This methodology focuses on crosstalk compensation of 3-D stereoscopic LCD systems in which active shutter glasses are employed. Subjective experiments indicate that crosstalk is a function of not only the pixel intensity in both the left and right channels, but also of spatial location. Accordingly, look-up tables (LUTs) are developed for spatially-adaptive crosstalk compensation. For a given combination of gray levels in the left and right channels at a specific spatial location, the original pixel values are replaced by values contained in the LUTs. The crosstalk in the resulting stereo pair is significantly reduced, resulting in a significant increase in perceptual image quality.
4

La continuité stéréoscopique : correspondances et discontinuité / Stereoscopic continuity : correspondances and discontinuities

Jacopin, Esther 02 December 2017 (has links)
Réalisée au sein du doctorat SACRe, la démarche de cette thèse est celle d'une recherche par la pratique. Elle est constituée de deux films en 3D stéréoscopique (3Ds). Ils sont accompagnés d'un manuscrit qui fait état des explorations et met en forme la réflexion menée au cours des trois années de doctorat.Dans un premier temps, la thèse s'emploie à définir la notion de continuité au cinéma. Elle conduit à l'identification des éléments requis pour l'existence de la continuité d'une part, et pour sa compréhension d'autre part, permettant ainsi d'établir un modèle de la continuité cinématographique, qui partage certains de ses principes avec d'autres domaines, tant scientifiques qu'artistiques.Nous analysons ensuite le cas singulier de la stéréoscopie, entre continuités et discontinuités. Cette étude technique et perceptive permet d'aborder pleinement les spécificités de cette technique, afin de faire l'état des lieux de la continuité dans le cinéma en 3D stéréoscopique.La recherche s'achève en mettant en lumière les possibilités artistiques inexplorées en 3Ds, parmi lesquelles celle d'enrichir la continuité stéréoscopique en s'inspirant de la façon dont l'architecture et la musique ont traité les notions de continuité et de discontinuité. Nous avons expérimenté certaines de ces possibilités au travers de deux courts métrages, dont nous rendons compte dans la dernière partie du manuscrit. / This work has been driven among the Sciences, Arts, Design and Research doctoral program (SACRe), which relies on a practice-based research. It is therefore made of two stereoscopic 3D (S3D) movies and a dissertation that reports the explorations and our reflexive approach during this three years program.The thesis first focuses on formalising the concept of continuity in cinema. This leads to enlighten elements that permits the continuity to exist on one hand, as well as those required for its understanding on the other hand, so as to define a general model of cinematographic continuity; that reveals itself to be sharing some of its principles with scientific disciplines as well as artistic ones.We then analyse the singular case of stereoscopy, between continuities and discontinuities. This technical and perceptual study enables us to apprehend its specificities, in order to examine the state of continuity in nowadays stereoscopic cinema.This work finally focuses on unexplored artistic possibilities in S3D, among which the enrichment of stereoscopic continuity, inspired by the way architecture and music have treated continuity and discontinuity issues. We have experimented some of these possibilities through two short films, as we report at the end of the dissertation.
5

Vize záznamového zařízení prostorového obrazu / Vision of recording device for stereoscopic picture

Jelínek, Tomáš January 2008 (has links)
We have a chance to live in one of greatest age in technical improvement, especially information technology. In this age, the time plays power full part. Five years in IT is in compare with humans life a like a full one generation. We can only speed up or speed down this improvement. And a human life improvement? It makes simpler just a technics. In the beginning it was necessity when a human was substituted by technics. Later it helps and salving. And in a top when human don’t need, when it don’t solve but especially in this time when people are in comfort of anything pushed by himself to searching new experience right in this part of life the technics upgrade and makes comfortable living. Right in this chapter pertain this theme which you may follow up in this project.
6

Exploring 3D User Interface Technologies for Improving the Gaming Experience

Kulshreshth, Arun 01 January 2015 (has links)
3D user interface technologies have the potential to make games more immersive & engaging and thus potentially provide a better user experience to gamers. Although 3D user interface technologies are available for games, it is still unclear how their usage affects game play and if there are any user performance benefits. A systematic study of these technologies in game environments is required to understand how game play is affected and how we can optimize the usage in order to achieve better game play experience. This dissertation seeks to improve the gaming experience by exploring several 3DUI technologies. In this work, we focused on stereoscopic 3D viewing (to improve viewing experience) coupled with motion based control, head tracking (to make games more engaging), and faster gesture based menu selection (to reduce cognitive burden associated with menu interaction while playing). We first studied each of these technologies in isolation to understand their benefits for games. We present the results of our experiments to evaluate benefits of stereoscopic 3D (when coupled with motion based control) and head tracking in games. We discuss the reasons behind these findings and provide recommendations for game designers who want to make use of these technologies to enhance gaming experiences. We also present the results of our experiments with finger-based menu selection techniques with an aim to find out the fastest technique. Based on these findings, we custom designed an air-combat game prototype which simultaneously uses stereoscopic 3D, head tracking, and finger-count shortcuts to prove that these technologies could be useful for games if the game is designed with these technologies in mind. Additionally, to enhance depth discrimination and minimize visual discomfort, the game dynamically optimizes stereoscopic 3D parameters (convergence and separation) based on the user's look direction. We conducted a within subjects experiment where we examined performance data and self-reported data on users perception of the game. Our results indicate that participants performed significantly better when all the 3DUI technologies (stereoscopic 3D, head-tracking and finger-count gestures) were available simultaneously with head tracking as a dominant factor. We explore the individual contribution of each of these technologies to the overall gaming experience and discuss the reasons behind our findings. Our experiments indicate that 3D user interface technologies could make gaming experience better if used effectively. The games must be designed to make use of the 3D user interface technologies available in order to provide a better gaming experience to the user. We explored a few technologies as part of this work and obtained some design guidelines for future game designers. We hope that our work will serve as the framework for the future explorations of making games better using 3D user interface technologies.
7

Stereoskopisk 3D i spel / Stereoscopic 3D in games

Lindström, David, Bennet, Henning January 2015 (has links)
I den här rapporten undersöks stereoskopisk 3D. Vi utreder hur ett spel ska anpassas för att tafram en så bra och tydlig stereoskopisk 3D-effekt som möjligt och så att betraktaren upplever etttydligt djup utan att uppleva ett obehag på grund av effekten. Rapporten tittar djupare på vilkatekniska aspekter man behöver ta hänsyn till vid spelutveckling i stereoskopisk 3D. Samt vilkaprestandabegränsningar som man bör ta hänsyn till vid stereoskopisk 3D. Vi beskriver hurprocessen och framtagandet av prototypen Kodo med anaglyfisk stereoskopisk 3D såg ut.Prototypen togs fram för att testa och analysera resultatet av stereoskopisk 3D-effekten. / In this report we investigate the technique of stereoscopic 3D. This report investigates the stepsneeded to create a game adapted for an improved stereoscopic 3D effect. Furthermore weinvestigate what improvements one should make to avoid the beholder to experience anydiscomfort due to the effect. The report talks about technical aspects one needs to considerwhen using stereoscopic 3D, as well as performance issues we might need to take intoconsideration. The process of developing the prototype of the game Kodo using anaglyphstereoscopic 3D and OpenGL is described in this report. The prototype was then used for testingand analyzing the stereoscopic 3D effects.
8

Optimal Stereo Reconstruction and 3D Visualization

Azari, Hossein Unknown Date
No description available.
9

Quel son spatialisé pour la vidéo 3D ? : influence d'un rendu Wave Field Synthesis sur l'expérience audio-visuelle 3D / Which spatialized sound for 3D video ? : influence of a Wave Field Synthesis rendering on 3D audio-visual experience

Moulin, Samuel 03 April 2015 (has links)
Le monde du divertissement numérique connaît depuis plusieurs années une évolution majeure avec la démocratisation des technologies vidéo 3D. Il est désormais commun de visualiser des vidéos stéréoscopiques sur différents supports : au cinéma, à la télévision, dans les jeux vidéos, etc. L'image 3D a considérablement évolué mais qu'en est-il des technologies de restitution sonore associées ? La plupart du temps, le son qui accompagne la vidéo 3D est basé sur des effets de latéralisation, plus au moins étendus (stéréophonie, systèmes 5.1). Il est pourtant naturel de s'interroger sur le besoin d'introduire des événements sonores en lien avec l'ajout de cette nouvelle dimension visuelle : la profondeur. Plusieurs technologies semblent pouvoir offrir une description sonore 3D de l'espace (technologies binaurales, Ambisonics, Wave Field Synthesis). Le recours à ces technologies pourrait potentiellement améliorer la qualité d'expérience de l'utilisateur, en termes de réalisme tout d'abord grâce à l'amélioration de la cohérence spatiale audio-visuelle, mais aussi en termes de sensation d'immersion. Afin de vérifier cette hypothèse, nous avons mis en place un système de restitution audio-visuelle 3D proposant une présentation visuelle stéréoscopique associée à un rendu sonore spatialisé par Wave Field Synthesis. Trois axes de recherche ont alors été étudiés : 1 / Perception de la distance en présentation unimodale ou bimodale. Dans quelle mesure le système audio-visuel est-il capable de restituer des informations spatiales relatives à la distance, dans le cas d'objets sonores, visuels, ou audio-visuels ? Les expériences menées montrent que la Wave Field Synthesis permet de restituer la distance de sources sonores virtuelles. D'autre part, les objets visuels et audio-visuels sont localisés avec plus de précisions que les objets uniquement sonores. 2 / Intégration multimodale suivant la distance. Comment garantir une perception spatiale audio-visuelle cohérente de stimuli simples ? Nous avons mesuré l'évolution de la fenêtre d'intégration spatiale audio-visuelle suivant la distance, c'est-à-dire les positions des stimuli audio et visuels pour lesquelles la fusion des percepts a lieu. 3 / Qualité d'expérience audio-visuelle 3D. Quel est l'apport du rendu de la profondeur sonore sur la qualité d'expérience audio-visuelle 3D ? Nous avons tout d'abord évalué la qualité d'expérience actuelle, lorsque la présentation de contenus vidéo 3D est associée à une bande son 5.1, diffusée par des systèmes grand public (système 5.1, casque, et barre de son). Nous avons ensuite étudié l'apport du rendu de la profondeur sonore grâce au système audio-visuel proposé (vidéo 3D associée à la Wave Field Synthesis). / The digital entertainment industry is undergoing a major evolution due to the recent spread of stereoscopic-3D videos. It is now possible to experience 3D by watching movies, playing video games, and so on. In this context, video catches most of the attention but what about the accompanying audio rendering? Today, the most often used sound reproduction technologies are based on lateralization effects (stereophony, 5.1 surround systems). Nevertheless, it is quite natural to wonder about the need of introducing a new audio technology adapted to this new visual dimension: the depth. Many alternative technologies seem to be able to render 3D sound environments (binaural technologies, ambisonics, Wave Field Synthesis). Using these technologies could potentially improve users' quality of experience. It could impact the feeling of realism by adding audio-visual spatial congruence, but also the immersion sensation. In order to validate this hypothesis, a 3D audio-visual rendering system is set-up. The visual rendering provides stereoscopic-3D images and is coupled with a Wave Field Synthesis sound rendering. Three research axes are then studied: 1/ Depth perception using unimodal or bimodal presentations. How the audio-visual system is able to render the depth of visual, sound, and audio-visual objects? The conducted experiments show that Wave Field Synthesis can render virtual sound sources perceived at different distances. Moreover, visual and audio-visual objects can be localized with a higher accuracy in comparison to sound objects. 2/ Crossmodal integration in the depth dimension. How to guarantee the perception of congruence when audio-visual stimuli are spatially misaligned? The extent of the integration window was studied at different visual object distances. In other words, according to the visual stimulus position, we studied where sound objects should be placed to provide the perception of a single unified audio-visual stimulus. 3/ 3D audio-visual quality of experience. What is the contribution of sound depth rendering on the 3D audio-visual quality of experience? We first assessed today's quality of experience using sound systems dedicated to the playback of 5.1 soundtracks (5.1 surround system, headphones, soundbar) in combination with 3D videos. Then, we studied the impact of sound depth rendering using the set-up audio-visual system (3D videos and Wave Field Synthesis).
10

Quel son spatialisé pour la vidéo 3D ? : influence d'un rendu Wave Field Synthesis sur l'expérience audio-visuelle 3D / Which spatialized sound for 3D video ? : influence of a Wave Field Synthesis rendering on 3D audio-visual experience

Moulin, Samuel 03 April 2015 (has links)
Le monde du divertissement numérique connaît depuis plusieurs années une évolution majeure avec la démocratisation des technologies vidéo 3D. Il est désormais commun de visualiser des vidéos stéréoscopiques sur différents supports : au cinéma, à la télévision, dans les jeux vidéos, etc. L'image 3D a considérablement évolué mais qu'en est-il des technologies de restitution sonore associées ? La plupart du temps, le son qui accompagne la vidéo 3D est basé sur des effets de latéralisation, plus au moins étendus (stéréophonie, systèmes 5.1). Il est pourtant naturel de s'interroger sur le besoin d'introduire des événements sonores en lien avec l'ajout de cette nouvelle dimension visuelle : la profondeur. Plusieurs technologies semblent pouvoir offrir une description sonore 3D de l'espace (technologies binaurales, Ambisonics, Wave Field Synthesis). Le recours à ces technologies pourrait potentiellement améliorer la qualité d'expérience de l'utilisateur, en termes de réalisme tout d'abord grâce à l'amélioration de la cohérence spatiale audio-visuelle, mais aussi en termes de sensation d'immersion. Afin de vérifier cette hypothèse, nous avons mis en place un système de restitution audio-visuelle 3D proposant une présentation visuelle stéréoscopique associée à un rendu sonore spatialisé par Wave Field Synthesis. Trois axes de recherche ont alors été étudiés : 1 / Perception de la distance en présentation unimodale ou bimodale. Dans quelle mesure le système audio-visuel est-il capable de restituer des informations spatiales relatives à la distance, dans le cas d'objets sonores, visuels, ou audio-visuels ? Les expériences menées montrent que la Wave Field Synthesis permet de restituer la distance de sources sonores virtuelles. D'autre part, les objets visuels et audio-visuels sont localisés avec plus de précisions que les objets uniquement sonores. 2 / Intégration multimodale suivant la distance. Comment garantir une perception spatiale audio-visuelle cohérente de stimuli simples ? Nous avons mesuré l'évolution de la fenêtre d'intégration spatiale audio-visuelle suivant la distance, c'est-à-dire les positions des stimuli audio et visuels pour lesquelles la fusion des percepts a lieu. 3 / Qualité d'expérience audio-visuelle 3D. Quel est l'apport du rendu de la profondeur sonore sur la qualité d'expérience audio-visuelle 3D ? Nous avons tout d'abord évalué la qualité d'expérience actuelle, lorsque la présentation de contenus vidéo 3D est associée à une bande son 5.1, diffusée par des systèmes grand public (système 5.1, casque, et barre de son). Nous avons ensuite étudié l'apport du rendu de la profondeur sonore grâce au système audio-visuel proposé (vidéo 3D associée à la Wave Field Synthesis). / The digital entertainment industry is undergoing a major evolution due to the recent spread of stereoscopic-3D videos. It is now possible to experience 3D by watching movies, playing video games, and so on. In this context, video catches most of the attention but what about the accompanying audio rendering? Today, the most often used sound reproduction technologies are based on lateralization effects (stereophony, 5.1 surround systems). Nevertheless, it is quite natural to wonder about the need of introducing a new audio technology adapted to this new visual dimension: the depth. Many alternative technologies seem to be able to render 3D sound environments (binaural technologies, ambisonics, Wave Field Synthesis). Using these technologies could potentially improve users' quality of experience. It could impact the feeling of realism by adding audio-visual spatial congruence, but also the immersion sensation. In order to validate this hypothesis, a 3D audio-visual rendering system is set-up. The visual rendering provides stereoscopic-3D images and is coupled with a Wave Field Synthesis sound rendering. Three research axes are then studied: 1/ Depth perception using unimodal or bimodal presentations. How the audio-visual system is able to render the depth of visual, sound, and audio-visual objects? The conducted experiments show that Wave Field Synthesis can render virtual sound sources perceived at different distances. Moreover, visual and audio-visual objects can be localized with a higher accuracy in comparison to sound objects. 2/ Crossmodal integration in the depth dimension. How to guarantee the perception of congruence when audio-visual stimuli are spatially misaligned? The extent of the integration window was studied at different visual object distances. In other words, according to the visual stimulus position, we studied where sound objects should be placed to provide the perception of a single unified audio-visual stimulus. 3/ 3D audio-visual quality of experience. What is the contribution of sound depth rendering on the 3D audio-visual quality of experience? We first assessed today's quality of experience using sound systems dedicated to the playback of 5.1 soundtracks (5.1 surround system, headphones, soundbar) in combination with 3D videos. Then, we studied the impact of sound depth rendering using the set-up audio-visual system (3D videos and Wave Field Synthesis).

Page generated in 0.0358 seconds