• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 7
  • 1
  • 1
  • Tagged with
  • 9
  • 9
  • 9
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The mineralocorticoid receptor amino terminal transactivation domain investigation of structural plasticity and protein-protein interactions /

Fischer, Katharina. January 2008 (has links)
Thesis (Ph.D.)--Aberdeen University, 2008. / Title from web page (viewed on Feb. 23, 2009). With: Natural disordered sequences in the amino terminal domain of nuclear receptors : lessons from the androgen and glucocorticoid receptors / Iain J. McEwan ... et al. Nuclear Receptor Signalling. 2007: 5. Includes bibliographical references.
2

STRUCTURE - FUNCTION RELATIONSHIPS OF THE VITAMIN D HORMONE RECEPTOR.

ALLEGRETTO, ELIZABETH ANNE. January 1987 (has links)
Avian intestinal cytosoluble receptors for 1,25-dihydroxyvitamin D₃ (1,25(OH)₂D₃) were subjected to limited trypsin digestion, endogenous proteolytic action, as well as carboxypeptidase treatment, and the physical and functional properties of the resulting discrete polypeptide fragments were identified and contrasted with the native 1,25(OH)₂D₃ receptor. Resultant fragments were followed by tracing either radioactive 1,25(OH)₂D₃ or by probing with anti-receptor monoclonal antibodies. Two differentially trypsin-sensitive effects on the 1,25(OH)₂D₃ receptor were noted when fragments were detected by their ability to bind 1,25(OH)₂[³H]D₃. Two hormone-bound fragments of 40 and 30 kDa were formed; neither bound to DNA-cellulose nor anti-receptor monoclonal antibodies. Immunoblot technology was used to show the disappearance of the 60 kDa receptor with increasing trypsin concentrations, paralleling the appearance of an immunoreactive 20 kDa fragment. The 20 kDa fragment did not bind hormone but was capable of interacting with DNA-cellulose in a fashion identical to that of the 60 kDa receptor. This fragment is likely the complementary fragment to the hormone-bound fragment of 40 kDa that is described above. In contrast to the exogeneous effect of trypsin, incubation of chick intestinal cytosol resulted in the time-dependent formation of an endogenous protease-derived fragment of 45 kDa. This species retained the hormone-binding site and the antibody determinant, but was devoid of DNA-binding activity. Moreover, it did not generate the trypsin-dependent 20 kDa fragment and therefore was derived from the opposite end of the receptor molecule. Carboxypeptidase treatment of the 1,25(OH)₂D₃ receptor produces a 56 kDa fragment which does not retain hormone, but which does bind to DNA-cellulose and monoclonal antibody. These combined data from various limited enzymatic cleavage studies of the receptor have facilitated the construction of a schematic model of the chick receptor in which the immunoreactive epitope is located between the N-terminal DNA-binding domain and the C-terminal hormone-binding domain. This map for the 1,25(OH)₂D₃ receptor protein is consistent with the general structure of steroid and thyroid hormone receptors and places the vitamin D hormone receptor in a class of macromolecules that are postulated to bind enhancer regions of responsive DNA and thereby control target gene transcription.
3

MOLECULAR BIOLOGY AND ACTIONS OF THE VITAMIN-D HORMONE RECEPTOR.

MANGELSDORF, DAVID JOHN. January 1987 (has links)
The active form of vitamin D is the steroid hormone 1,25-dihydroxyvitamin D₃ [1,25(OH)₂D₃]. Central to the mechanism of action of 1,25(OH)₂D₃ is its specific, high affinity intracellular receptor. This research focused on the participation of this receptor in the biology, biochemistry, and molecular biology of the vitamin D regulatory system. The effects of 1,25(OH)₂D₃ on the differentiation of hematopoietic cells were investigated using the cultured human promyelocytic leukemia cell line, HL-60, as a model. It was observed that 1,25(OH)₂D₃ induced macrophage differentiation in HL-60 cells and that a direct biochemical correlation existed between 1,25(OH)₂D₃ receptor saturation and a 1,25(OH)₂D₃-stimulated bioresponse. These data implicate 1,25(OH)₂D₃ as a natural cell differentiating agent and the 1,25(OH)₂D₃ receptor as the mediator of this hormone's action. Since the most fundamental level of control occurs by the regulation of gene expression, studies were undertaken to define the transcriptional control by 1,25(OH)₂D₃ over a known vitamin D-regulated endpoint protein. This work resulted in the molecular cloning of cDNAs to two avian intestinal calcium binding proteins, vitamin D-dependent calcium binding protein and a novel calmodulin-like protein. To gain further insight into the role of the 1,25(OH)₂D₃ receptor as a transcriptional regulator, avian and mammalian 1,25(OH)₂D₃ receptor mRNAs were characterized extensively by the techniques of in vitro translation and immunoprecipitation. These mRNAs were then utilized to construct cDNA libraries from which avian and human intestinal 1,25(OH)₂D₃ receptor cDNAs were isolated and their identity verified by hybrid-selected translation, sequencing, and Northern analysis. It was concluded that demonstrated 1,25(OH)₂D₃ receptors are polypeptides of 52-60 kDa whose activity is regulated by 1,25(OH)₂D₃ at both an mRNA and posttranslational level. Furthermore, the deduced amino acid sequence of receptor mRNA included a highly conserved cysteine, lysine, and arginine rich region that is homologous to other steroid receptors and the oncogene product v- erbA. Thus, the vitamin D receptor to be a specific trans -acting factor, modulating the pleiotropic effects of vitamin D including calcium homeostasis, and cellular differentiation.
4

Molecular cloning and characterization of two cDNAs encoding for two forms of FTZ-F1 in the sand shrimp, Metapenaeus ensis

陳家文, Chan, Ka-man. January 1999 (has links)
published_or_final_version / Zoology / Master / Master of Philosophy
5

Influence of endogenous female sex-steroids on mutagen metabolism

Goold, Richard David 15 March 2013 (has links)
Cytochrome P-450, the terminal oxidase of the metabolic mono-oxygenase system, is thought to exist in multiple forms, which have differing substrate specificities, and are variably inducible by different enzyme inducers. Many mutagens, themselves unreactive, require metabolic activation by one or more of these cytochrome P-450-dependent microsomal enzymes for mutagenic activity. Such mutagens may be detected in the Salmonella mutagenicity test only by the incorporation of an hepatic microsomal (59) fraction into the assay (as a first approximation to in vivo metabolism). Induction of the microsomal enzymes by different agents enhances the metabolic activation of mutagens; in fact, many mutagens are only detected when the 59 fraction has been induced by appropriate agents. Inducers of the phenobarbital-type are known to enhance microsomal steroid hydroxylation when administered at supraphysiological levels, inducers of several mono-oxygenase activities. In turn, the steroids, have been reported to be The inductive effects of the female sex-steroids and the combined effects of steroid and phenobarbital (PB) pretreatment on the metabolic activation of four mutagens have been investigated using the Salmonella assay. Female Sprague-Dawley rats were pret reated with 17a-oestradiol (E2) or progesterone (PRG) , at a level of either 1 mg/kg or 20 mg / kg daily for 14 days. A duplicate set of similarly pretreated groups were also induced with PB. Hepatic microsomal fractions were prepared from each group and incubated with each of the te st mutagens in the presence of a tester strain known to detect each particular type of mutagen. Induction of the hepatic metabolizing system by PB increased the activation of the mutagens significantly (as reflected by an increased number of revertant prototrophic S .typhimurium colonies). The administration of PRG also caused significant, and dose-dependent, induction of the activation of af l atoxin B1, benzo(a)pyrene, and dimethylnitrosamine. In general, E2 exhibited no inductive effect, but it did produce an increase in the activation of aflatoxin B1 (a reaction which is known to be catalysed by a mono-oxygenase prefe rentially inducible by PB). When use was made of a microsomal fraction that was prepared from animals which were both steroidpretreated and induced by PB, mutagenic activation was of the same order of magnitude as that observed when induction was brought about by PB alone. The absence of additive effect, taken together with the observations already mentioned, indicate that steroids induce the same cytochrome isozymes that are induced by PB. The implications of sex-hormonal regulation of the metabolic activation of mutagens are briefly discussed. / KMBT_363 / Adobe Acrobat 9.53 Paper Capture Plug-in
6

The role of steroidogenic factor-1 (SF-1) in transcriptional regulation of the gonadotropin-releasing hormone (GnRH) receptor gene

Styger, Gustav 03 1900 (has links)
Thesis (MSc)--Stellenbosch University, 2001. / ENGLISH ABSTRACT: The GnRH receptor is a G-protein-coupled receptor in pituitary gonadotrope cells. Binding of its ligand, GnRH, results in synthesis and release of gonadotropin hormones luteinizing hormone (LH) and follicle stimulating hormone (FSH). Steroidogenic factor 1 (SF-1), a transcription factor, binds to specific sites in the promoter region of gonadotropin genes, and thus regulates transcription of these genes. The promoter region of the GnRHreceptor gene contains two SF-1-like binding sites, one at -14 to -8 (site 1) and another at -247 to -239 (site 2), relative to the methionine start codon. The role played by these two SF-1-like sites in basal transcription of the mouse GnRH receptor (mGnRH-R) gene in a pituitary precursor gonadotrope cell line, aT3 cells, was the first area of investigation during this study. Luciferase reporter constructs containing 580 bp of mGnRH-R gene promoter were prepared, where SF-1-like sites were either wildtype or mutated. Four such constructs were made, i.e. wildtype (LG), site 1 mutant (LGM1), site 2 mutant (LGM2) and mutated site 1 plus site 2 (LGM1/2). These constructs were transfected into aT3 cells to determine the effect of mutations of sites 1 and/or 2 on the basal expression of the mGnRH-R gene. Mutation of either site 1 or site 2 had no effect on basal expression of the mGnRH-R gene. It was found that only upon simultaneous mutation of both sites 1 and 2, a 50% reduction in basal transcription took place. The implications of this is that SF-1 protein seems to only require one intact DNA-binding site, to mediate basal transcription of the mGnRH-R gene, suggesting that these two sites lie in close proximity during basal transcription. The effect of the protein kinase A (PKA) pathway on the endogenous mGnRH-R gene was also investigated by incubating non- , transfected aT3 cells with the PKA activators, forskolin and 8-Br-cAMP. Similar incubations were also performed on the wild type and mutated site 1 constructs transfected into pituitary gonadotrope aT3 cells. It was found that forskolin and 8-Br-cAMP were able to increase endogenous mGnRH-R mRNA levels in a concentration-dependent fashion, showing that endogenous GnRH receptor gene expression is stimulated via a protein kinase A pathway. Similar results were obtained with the wildtype promoter construct, showing that the protein kinase A pathway stimulates transcription of the promoter. This effect was only seen with wild type and not with the mutated site 1. These results are consistent with a role for a SF-1-like transcription factor in mediating the protein kinase A effect via binding to the site 1 at position -14 in the GnRH receptor gene. A separate investigation was performed to determine whether 25-hydroxycholesterol (25-0HC) is a ligand for SF-1, by incubating aT3 cells transfected with the various constructs with 25-0HC. Results show a dose-dependant response, with an increase in gene expression at 1 μM and a decrease at higher concentrations, for both mutant and wild type constructs. This suggests that, if SF-1 is indeed the protein binding to sites 1 and 2, then 25-0HC is not a ligand for SF-1 protein in aT3 cells and that the effect of 25-0HC on the mGnRH-R gene is not mediated via site 1. The results indicate that these decreases of expression at the higher concentrations may be due to cytotoxic effects. Towards the end of the study the laboratory obtained a luminoskan instrument with automatic dispensing features. Optimisation studies on the luciferase and β-Gal assays were performed on the luminoskan in a bid to decrease experimental error. It was found that automation of these assays resulted in a decrease in experimental error, showing that future researchers could benefit substantially from these optimisation studies. / AFRIKAANSE OPSOMMING: Die GnRH reseptor is 'n G proteïen-gekoppelde reseptor in pituitêre gonadotroopselle. Binding van die ligand, GnRH, lei tot die sintese en vrystelling van die gonadotropien hormone, luteïniserende hormoon (LH) en follikel stimulerende hormoon (FSH). Steroidogeniese faktor-t (SF-1) is 'n transkripsie faktor wat aan spesifieke areas in die promotergebied van die gonadotropien hormone bind, en dus transkripsie van hierdie gene reguleer. Die promotergebied van die GnRH reseptor geen bevat twee SF-1 bindings areas, een by -14 to -8 (area 1) asook by -247 to -239 (area 2), relatief to die metionien beginkodon. Die rol wat hierdie twee SF-1 areas speel in basale transkripsie van die muis GnRH reseptor (mGnRH-R) geen in 'n pituïtêre voorloper gonadotroop sellyn, aT3 selle, was die eerste gebied van ondersoek gedurende hierdie studie. Plasmiede bestaande uit die 580 basispaar mGnRH-R promoter verbind aan 'n lusiferase geen is vervaardig, waar SF-1-soortige areas enersyds onveranderd gelaat is, of gemuteer is. Vier sulke plasmiede is vervaardig, nl. onveranderd (LG), area 1 mutant (LGM1), area 2 mutant (LGM2) en gemuteerde area 1 plus area 2 (LGM1/2). Hierdie plasmiede is gebruik om aT3 selle te transfekteer om die effek van mutasies van areas 1 en/of 2 op die basale ekspressie van die mGnRH-R geen te ondersoek. Daar is gevind dat mutasies van areas 1 of 2 geen effek op basale ekspressie op die bogenoemde geen gehad het nie. Slegs tydens gelyktydige mutasie van areas 1 en 2 het 'n 50% vermindering in basale transkripsie plaasgevind. Die implikasies hiervan is dat die SF-1 proteïen blykbaar slegs een volledige DNA-bindingsarea benodig om basale transkripsie van die mGnRH-R geen te reguleer. Dit wil dus voorkom of hierdie twee areas baie na aan mekaar geposisioneer is tydens basale transkripsie. Die effek van die proteïen kinase A (PKA) roete op die natuurlike mGnRH-R geen is ook ondersoek tydens inkubasie van nie-getransfekteerde aT3 selle met die PKA akiveerders, forskolin en 8-Br-cAMP. Soortgelyke inkubasie is ook gedoen op die onveranderde en gemuteerde area 1 plasmiede wat in aT3 selle getransfekteer is. Daar is gevind dat forskolin en 8-Br-cAMP daarin geslaag het om die natuurlike mGnRH-R geen mRNA vlakke op 'n konsentrasie-afhanklike wyse te vermeerder. Hierdie resultaat dui daarop aan dat die natuurlike mGnRH-R geen se ekspressie gestimuleer kan word via 'n proteïen kinase A roete. Soortgelyke resultate is verkry met die onveranderde promoter plasmied en dit wys ook daarop dat proteïen kinase A transkripsie deur die promoter kan stimuleer. Hierdie effek was slegs aanwesig met die onveranderde en nie met die gemuteerde area 1 plasmied nie. Die resultate stem ooreen met 'n rol vir SF-1 transkripsie faktor in die regulering van proteren kinase A effek deur middel van binding aan die area 1 by posisie -14 in die GnRH-R geen. 'n Afsonderlike ondersoek is gedoen om vas te stel of 25-hidroksiecholesterol (25-0HC) 'n ligand vir SF-1 is deur getransfekteerde aT3 selle met 25-0HC te inkubeer. Resultate toon 'n dosis-afhanklike respons met 'n verhoging in geen ekspressie by 1 μM en 'n verlaging met hoër konsentrasies vir beide onveranderde en gemuteerde plasmiede. Dit impliseer dat, indien SF-1 wel die faktor is wat aan areas 1 en 2 bind, 25-0HC nie die ligand vir SF-1 proteren in aT3 selle is nie en dat die effek van 25-0HC op die mGnRH-R geen nie gereguleer word via area 1 nie. Die verlaging in ekspressie gevind by die hoër konsentrasies is dalk die gevolg van sitotoksiese effekte. Teen die einde van die studie het die laboratorium luminoskan toerusting met outomatiese pipettering verkry. Optimiseringstudies van die lusifirase en β-Galtoetse is met die luminoskan gedoen in 'n poging om eksperimentele foute te minimaliseer. Daar is gevind dat outomatisering van hierdie toetse wel gelei het tot 'n verlaging in eksperimentele foute. Toekomstige navorsers kan dus grootliks voordeel trek uit hierdie optimiseringstudies.
7

Expression of 11β-hydroxysteroid dehydrogenases in mice and the role of glucocorticoids in adipocyte function

Hoong, Isabelle Yoke Yien January 2003 (has links)
Abstract not available
8

Biochemical and behavioral characterization of steroid receptors in neuronal membranes

Orchinik, Miles 13 March 1992 (has links)
Graduation date: 1992
9

Molecular Mechanism of Action of Steroid Hormone Receptors

Nawaz, Zafar 05 1900 (has links)
A novel bacterial expression system that is capable of producing high levels of soluble, stable, biologically active human vitamin D3 and estrogen receptors has been developed. The method utilizes ubiquitin fusion technology and a low temperature nalidixic acid induction of the lambda PL promoter. This system can produce large quantities of receptor antigen, but only a small fraction displays wild-type DNA and hormone binding properties. Therefore, the use of this system to overproduce receptors for crystallization studies is not practical. To overcome these problems, a 2 um based ubiquitin fusion system which allows regulated expression of the estrogen receptor in yeast (Saccharomyces cerevisiae) was developed. This system produces the estrogen receptor to a level of 0.2% of the total soluble protein. Moreover, this protein is undegradable, soluble, and biologically active. To test the transcriptional activity of the estrogen receptor produced in yeast, a cis-trans transcription assay was developed. This assay revealed that the transcriptional activity of the human estrogen receptor expressed in yeast was similar to that observed in transfected mammalian cells. This reconstituted estrogen transcription unit in Saccharomyces cerevisiae was utilized to examine the regulation of estrogen receptor functions by antiestrogens, to develop a random and rapid approach for identifying novel estrogen response elements, to characterize estrogen receptor variants cloned from human breast tumors, and to examine the effect of estrogen receptor on the regulation of osteocalcin gene.

Page generated in 0.09 seconds