1 |
Hormonal Regulation of Vaginal MucosaKunovac Kallak, Theodora January 2015 (has links)
Vaginal atrophy symptoms such as dryness, irritation, and itching, are common after menopause. Vaginal estrogen therapy is the most effective treatment but not appropriate for all women. Women with estrogen-responsive breast cancer treated with aromatase inhibitor (AI) treatment, suppressing estrogen levels, often suffer from more pronounced vaginal atrophy symptoms. However, vaginal estrogen treatment is not recommended, leaving them without effective treatment options. The aim of this thesis was to study the effect of long-term anti-estrogen therapy on circulating estrogen levels and biochemical factors in vaginal mucosa in relation to morphological changes and clinical signs of vaginal atrophy. Circulating estrogen levels were analyzed by use of mass spectrometry and radioimmunoassay. Immunohistochemistry was used to study vaginal proliferation and steroid hormone receptors in vaginal mucosa. Vaginal gene expression was studied by use of microarray technology and bioinformatic tools, and validated by use of quantitative real-time PCR and immunohistochemistry. An estrogenic regulation of aquaporins and a possible role in vaginal dryness was investigated in vaginal mucosa and in Vk2E6E7 cells. Aromatase inhibitor-treated women had higher than expected estradiol and estrone levels but still significantly lower than other postmenopausal women. Aromatase was detected in vaginal tissue, the slightly stronger staining in vaginal mucosa from AI-treated women, suggest a local inhibition of vaginal aromatase in addition to the systemic suppression. Vaginal mucosa from AI-treated women had weak progesterone receptor, and strong androgen receptor staining intensity. Low estrogen levels lead to low expression of genes involved in cell adhesion, proliferation, and differentiation as well as weak aquaporin 3 protein immunostaining. The higher than expected estrogen levels in AI-treated women suggest that estrogen levels might previously have been underestimated. Systemic estrogen suppression by treatment with AIs, and possibly also by local inhibition of vaginal aromatase, results in reduced cell adhesion, proliferation, differentiation, and weak aquaporin 3 protein staining. Low proliferation and poor differentiation leads to fewer and less differentiated superficial cells affecting epithelial function and possibly also causing vaginal symptoms. Aquaporin 3 with a possible role in vaginal dryness, cell proliferation, and differentiation should be further explored for the development of non-hormonal treatment options for vaginal symptoms.
|
2 |
Molecular Physiological Evolution: Steroid Hormone Receptors and Antifreeze ProteinsCziko, Paul 14 January 2015 (has links)
For my dissertation research I explored the diversity and functional evolution of steroid hormone receptors (SRs) in animals and the physiological implications of the evolution of antifreeze proteins in Antarctic notothenioid fishes.
For the former, I discovered multiple new SRs from the vast and under-sampled swath of animal diversity known as invertebrates. I used the sequences of these and other newly discovered related receptors in combination with genomic data and molecular phylogenetic techniques to revise the understanding of the evolutionary history of this important gene family. While previous studies have suggested that vertebrate SR diversity arose from a gene duplication in an ancestor of all bilaterian animals, my work presents strong evidence that this duplication occurred much later, at the base of the chordates. Furthermore, to determine the implications of added diversity and a revised phylogeny on inferences of the functional evolution of SRs, I functionally characterized heretofore-unknown SRs from hemichordates, an acoelomate flatworm, and a chaetognath and statistically reconstructed and functionally characterized ancestral SRs. My results expand the known sequence and functional repertoire of SRs in animals while reinforcing the previous inference that all SRs evolved from an estrogen-sensitive ancestral receptor.
I also explored the consequences of the evolution of antifreeze proteins in Antarctic notothenioid fishes, a crucial adaptation to their icy, polar environment. These special proteins adsorb to ice crystals that enter a fish's body and prevent further growth, thereby averting death. I discovered that, in addition to their lifesaving growth-inhibiting ability, AFPs also prevent the melting of internal ice crystals at temperatures above the expected equilibrium melting point. Together with a decade-long temperature record of one of the coldest fish habitats on earth, my experimental results show that the evolution and expression of antifreeze proteins is accompanied by a potentially detrimental consequence: the lifelong accumulation of ice inside these fishes' bodies.
This dissertation includes previously published co-authored material as well as unpublished co-authored material. / 2017-01-14
|
3 |
Molecular Mechanism of Action of Steroid Hormone ReceptorsNawaz, Zafar 05 1900 (has links)
A novel bacterial expression system that is capable of producing high levels of soluble, stable, biologically active human vitamin D3 and estrogen receptors has been developed. The method utilizes ubiquitin fusion technology and a low temperature nalidixic acid induction of the lambda PL promoter. This system can produce large quantities of receptor antigen, but only a small fraction displays wild-type DNA and hormone binding properties. Therefore, the use of this system to overproduce receptors for crystallization studies is not practical. To overcome these problems, a 2 um based ubiquitin fusion system which allows regulated expression of the estrogen receptor in yeast (Saccharomyces cerevisiae) was developed. This system produces the estrogen receptor to a level of 0.2% of the total soluble protein. Moreover, this protein is undegradable, soluble, and biologically active. To test the transcriptional activity of the estrogen receptor produced in yeast, a cis-trans transcription assay was developed. This assay revealed that the transcriptional activity of the human estrogen receptor expressed in yeast was similar to that observed in transfected mammalian cells. This reconstituted estrogen transcription unit in Saccharomyces cerevisiae was utilized to examine the regulation of estrogen receptor functions by antiestrogens, to develop a random and rapid approach for identifying novel estrogen response elements, to characterize estrogen receptor variants cloned from human breast tumors, and to examine the effect of estrogen receptor on the regulation of osteocalcin gene.
|
4 |
Regulation of the 11beta-hydroxysteroid dehydrogenase type 2 promoter by steroid hormones in breast cancer cells. Convergence of progesterone receptor binding to DNA and JAK/START pathway activationSubtil Rodriguez, Alicia 27 June 2007 (has links)
El gen humano 11-HSD2 es un modelo para investigar la contribución de los efectos de los receptores de esteroides en células de cáncer de mama. El análisis del promotor mostró que la región distal está implicada en la mayor parte de la activación dependiente de hormona. En respuesta a hormona, STAT5A se recluta a la región distal y PR a las regiones distal y proximal del promotor. El reclutamiento de PR se debe a dos mecanismos diferentes, la unión directa de PR a la región proximal, y la implicación vía JAK/STAT en el reclutamiento a la región distal. La inducción del gen 11-HSD2 por hormonas disminuye parcialmente por inhibidores de MAPK y PI3K/Akt y totalmente por inhibidores de JAK/STAT. Así, los efectos citoplasmáticos del PR están implicados en la inducción del gen progesterona. La forma activa de la ARN-polimerasa II es reclutada por la inducción con hormonas a la región distal del promotor 11-HSD2 y la región distal tiene respuesta a hormonas por sí misma, indicando que la inducción del gen por hormonas empieza antes del sitio de inicio de transcripción descrito previamente. / The human 11-HSD2 gene is a model to investigate the contribution of steroid hormone receptors effects on a progesterone responsive promoter in breast cancer cells. Deletion analysis of the 11-HSD2 promoter showed that the distal region is involved in most of the hormone-dependent activation. ChIP showed hormone-dependent STAT5A-recruitment to the distal region and PR-recruitment to the distal and proximal promoter regions. Results suggest two different mechanisms of hormone-induced PR-recruitment, since cells stably expressing PR containing a mutated DNA-binding domain have affected hormone-dependent PR-recruitment to proximal promoter, and JAK/STAT pathway inhibition blocks PR-recruitment to distal promoter. Hormone-stimulated 11-HSD2 gene-expression was partially decreased by MAPK and PI3K/AKT pathway inhibitors and totally blocked by JAK/STAT pathways inhibitors, indicating that cytoplasmic PR effects involvement in progestin-induced 11-HSD2 expression. Importantly, upon hormone induction active RNA-polymerase II is recruited from the 11-HSD2 distal promoter region and the distal minimal promoter has hormone-responsiveness by itself, suggesting that progesterone-dependent 11-HSD2 expression starts upstream the previously characterized transcription start site.
|
Page generated in 0.0914 seconds