Spelling suggestions: "subject:"stochastic codels"" "subject:"stochastic 2models""
51 |
Hedging Strategies of an European Claim Written on a Nontraded AssetKaczorowska, Dorota, Wieczorek, Piotr Unknown Date (has links)
An article of Zariphopoulou and Musiela "An example of indifference prices under exponential preferences", was background of our work.
|
52 |
Hybrid is good: stochastic optimization and applied statistics for orChun, So Yeon 08 May 2012 (has links)
In the first part of this thesis, we study revenue management in resource exchange alliances. We first show that without an alliance the sellers will tend to price their products too high and sell too little, thereby foregoing potential profit, especially when capacity is large. This provides an economic motivation for interest in alliances, because the hope may be that some of the foregone profit may be captured under an alliance. We then consider a resource exchange alliance, including the effect of the alliance on competition among
alliance members. We show that the foregone profit may indeed be captured under such an alliance. The problem of determining the optimal amounts of resources to exchange is formulated as a stochastic mathematical program with equilibrium constraints. We demonstrate how to determine whether there exists a unique equilibrium after resource exchange, how to compute the equilibrium, and how to compute the optimal resource exchange.
In the second part of this thesis, we study the estimation of risk measures in risk management. In the financial industry, sell-side analysts periodically publish recommendations of underlying securities with target prices. However, this type of analysis does not provide risk measures associated with underlying companies. In this study, we discuss linear regression approaches to the estimation of law invariant conditional risk measures. Two estimation procedures are considered and compared; one is based on residual analysis of
the standard least squares method and the other is in the spirit of the M-estimation approach used in robust statistics. In particular, Value-at-Risk and Average Value-at-Risk measures are discussed in detail. Large sample statistical inference of the estimators is derived. Furthermore, finite sample properties of the proposed estimators are investigated and compared with theoretical derivations in an extensive Monte Carlo study. Empirical results on the real data (different financial asset classes) are also provided to illustrate the performance of the estimators.
|
53 |
Syntactic foundations for machine learningBhat, Sooraj 08 April 2013 (has links)
Machine learning has risen in importance across science, engineering, and business in
recent years. Domain experts have begun to understand how their data analysis problems
can be solved in a principled and efficient manner using methods from machine learning,
with its simultaneous focus on statistical and computational concerns. Moreover, the data
in many of these application domains has exploded in availability and scale, further underscoring the need for algorithms which find patterns and trends quickly and correctly.
However, most people actually analyzing data today operate far from the expert level.
Available statistical libraries and even textbooks contain only a finite sample of the possibilities afforded by the underlying mathematical principles. Ideally, practitioners should
be able to do what machine learning experts can do--employ the fundamental principles to
experiment with the practically infinite number of possible customized statistical models as
well as alternative algorithms for solving them, including advanced techniques for handling
massive datasets. This would lead to more accurate models, the ability in some cases to
analyze data that was previously intractable, and, if the experimentation can be greatly
accelerated, huge gains in human productivity.
Fixing this state of affairs involves mechanizing and automating these statistical and
algorithmic principles. This task has received little attention because we lack a suitable
syntactic representation that is capable of specifying machine learning problems and solutions, so there is no way to encode the principles in question, which are themselves a
mapping between problem and solution. This work focuses on providing the foundational
layer for enabling this vision, with the thesis that such a representation is possible. We
demonstrate the thesis by defining a syntactic representation of machine learning that is
expressive, promotes correctness, and enables the mechanization of a wide variety of useful
solution principles.
|
54 |
Joint pricing and inventory control under reference price effectsGimpl-Heersink, Lisa 05 1900 (has links) (PDF)
In many firms the pricing and inventory control functions are separated. However, a number of theoretical models suggest a joint determination of inventory levels and prices, as prices also affect stocking risks. In this work, we address the problem of simultaneously determining a pricing and inventory replenishment strategy under reference price effects. This reference price effect models the empirically well established fact that consumers not only react sensitively to the current price, but also to deviations from a reference price formed on the basis of past purchases. The current price is then perceived as a discount or surcharge relative to this reference price. Thus, immediate effects of price reductions on profits have to be weighted against the resulting losses in future periods. We study how the additional dynamics of the consumers' willingness to pay affect an optimal pricing and inventory control model and whether a simple policy such as a base-stock-list-price policy holds in such a setting. For a one-period planning horizon we analytically prove the optimality of a base-stock-list-price policy with respect to the reference price under general conditions. We then extend this result to the two-period time horizon for the linear and loss-neutral demand function and to the multi-period case under even more restrictive assumptions. However, numerical simulations suggest that a base-stock-list-price policy is also optimal for the multi-period setting under more general conditions. We furthermore show by numerical investigations that the presence of reference price effects decreases the incentive for price discounts to deal with overstocked situations. Moreover, we find that the potential benefits from simultaneously determining optimal prices and stocking quantities compared to a sequential procedure can increase considerably, when reference price effects are included in the model. This makes an integration of pricing and inventory control with reference price effects by all means worth the effort. (author's abstract)
|
55 |
Stochastic modeling of cooperative wireless multi-hop networksHassan, Syed Ali 18 October 2011 (has links)
Multi-hop wireless transmission, where radios forward the message of other radios, is becoming popular both in cellular as well as sensor networks.
This research is concerned with the statistical modeling of multi-hop wireless networks that do cooperative transmission (CT). CT is a physical layer wireless
communication scheme in which spatially separated wireless nodes collaborate to form a virtual array antenna for the
purpose of increased reliability. The dissertation has two major parts. The first part addresses a special form of CT known as the Opportunistic Large Array (OLA). The second part addresses the signal-to-noise ratio (SNR) estimation for the purpose of recruiting nodes for CT.
In an OLA transmission, the nodes from one level transmit the message signal concurrently without any coordination with each other, thereby producing transmit diversity. The receiving layer of nodes receives the message signal and repeats the process using the decode-and-forward cooperative protocol. The key contribution of this research is to model the transmissions that hop from one layer of nodes to another under the effects of channel variations, carrier frequency offsets, and path loss. It has been shown for a one-dimensional network that the successive transmission process can be modeled as a quasi-stationary Markov chain in discrete time. By studying various properties of the Markov chain, the system parameters, for instance, the transmit power of relays and distance between them can be optimized. This optimization is used to improve the performance of the system in terms of maximum throughput, range extensions, and minimum delays while delivering the data to the destination node using the multi-hop wireless communication system.
A major problem for network sustainability, especially in battery-assisted networks, is that the batteries are drained pretty quickly during the operation of the network. However, in dense sensor networks, this problem can be alleviated by using a subset of nodes which take part in CT, thereby saving the network energy. SNR is an important parameter in determining which nodes to participate in CT. The more distant nodes from the source having least SNR are most suitable to transmit the message to next level. However, practical real-time SNR estimators are required to do this job. Therefore, another key contribution of this research is the design of optimal SNR estimators for synchronized as well as non-synchronized receivers, which can work with both the symbol-by-symbol Rayleigh fading channels as well as slow flat fading channels in a wireless medium.
|
56 |
Studies of inventory control and capacity planning with multiple sourcesZahrn, Frederick Craig. January 2009 (has links)
Thesis (Ph.D)--Industrial and Systems Engineering, Georgia Institute of Technology, 2010. / Committee Co-Chair: John H. Vande Vate; Committee Co-Chair: Shi-Jie Deng; Committee Member: Anton J. Kleywegt; Committee Member: Hayriye Ayhan; Committee Member: Mark E. Ferguson. Part of the SMARTech Electronic Thesis and Dissertation Collection.
|
57 |
Prioritization and optimization in stochastic network interdiction problemsMichalopoulos, Dennis Paul, 1979- 05 October 2012 (has links)
The goal of a network interdiction problem is to model competitive decision-making between two parties with opposing goals. The simplest interdiction problem is a bilevel model consisting of an 'adversary' and an interdictor. In this setting, the interdictor first expends resources to optimally disrupt the network operations of the adversary. The adversary subsequently optimizes in the residual interdicted network. In particular, this dissertation considers an interdiction problem in which the interdictor places radiation detectors on a transportation network in order to minimize the probability that a smuggler of nuclear material can avoid detection. A particular area of interest in stochastic network interdiction problems (SNIPs) is the application of so-called prioritized decision-making. The motivation for this framework is as follows: In many real-world settings, decisions must be made now under uncertain resource levels, e.g., interdiction budgets, available man-hours, or any other resource depending on the problem setting. Applying this idea to the stochastic network interdiction setting, the solution to the prioritized SNIP (PrSNIP) is a rank-ordered list of locations to interdict, ranked from highest to lowest importance. It is well known in the operations research literature that stochastic integer programs are among the most difficult optimization problems to solve. Even for modest levels of uncertainty, commercial integer programming solvers can have difficulty solving models such as PrSNIP. However, metaheuristic and large-scale mathematical programming algorithms are often effective in solving instances from this class of difficult optimization problems. The goal of this doctoral research is to investigate different methods for modeling and solving SNIPs (optimization) and PrSNIPs (prioritization via optimization). We develop a number of different prioritized and unprioritized models, as well as exact and heuristic algorithms for solving each problem type. The mathematical programming algorithms that we consider are based on row and column generation techniques, and our heuristic approach uses adaptive tabu search to quickly find near-optimal solutions. Finally, we develop a group of hybrid algorithms that combine various elements of both classes of algorithms. / text
|
58 |
Climate Variability and Ecohydrology of Seasonally Dry EcosystemsFeng, Xue January 2015 (has links)
<p>Seasonally dry ecosystems cover large areas over the world, have high potential for carbon sequestration, and harbor high levels of biodiversity. They are characterized by high rainfall variability at timescales ranging from the daily to the seasonal to the interannual, and water availability and timing play key roles in primary productivity, biogeochemical cycles, phenology of growth and reproduction, and agricultural production. In addition, a growing demand for food and other natural resources in these regions renders seasonally dry ecosystems increasingly vulnerable to human interventions. Compounded with changes in rainfall regimes due to climate change, there is a need to better understand the role of climate variabilities in these regions to pave the way for better management of existing infrastructure and investment into future adaptations. </p><p>In this dissertation, the ecohydrological responses of seasonally dry ecosystem to climate variabilities are investigated under a comprehensive framework. This is achieved by first developing diagnostic tools to quantify the degree of rainfall seasonality across different types of seasonal climates, including tropical dry, Mediterranean, and monsoon climates. This global measure of seasonality borrows from information theory and captures the essential contributions from both the magnitude and concentration of the rainy season. By decomposing the rainfall signal from seasonality hotspots, increase in the interannual variability of rainfall seasonality is found, accompanied by concurrent changes in the magnitude, timing, and durations of seasonal rainfall, suggesting that increase in the uncertainty of seasonal rainfall may well extend into the next century. Next, changes in the hydrological partitioning, and the temporal responses of vegetation resulting from these climate variabilities, are analyzed using a set of stochastic models that accounts for the unpredictability rainfall as well as its seasonal trajectories. Soil water storage is found to play a pivotal role in regulating seasonal soil water hysteresis, and the balance between seasonal soil water availability and growth duration is found to induce maximum plant growth for a given amount of annual rainfall. Finally, these methods are applied in the context of biodiversity and the interplay of irrigation and soil salinity, which are prevailing management issues in seasonally dry ecosystems.</p> / Dissertation
|
59 |
Stochastic Models of –1 Programmed Ribosomal FrameshiftingBailey, Brenae L. January 2014 (has links)
Many viruses can produce multiple proteins from a single mRNA sequence by encoding the proteins in overlapping genes. One mechanism that causes the ribosomes of infected cells to decode both genes is –1 programmed ribosomal frameshifting. In this process, structural elements of the viral mRNA signal the ribosome to shift reading frames at a specific point. Although –1 frameshifting has been recognized since 1985, the mechanism is not well understood. I have developed a stochastic model of mRNA translation that includes the possibility of a –1 frameshift at any codon. The transition probabilities between states of the model are based on the energetics of local molecular interactions. The model reproduces observed translation rates as well as both the location and efficiency of frameshift events in the HIV-1 gag-pol sequence. In this work, the model is used to predict changes in the frameshift efficiency due to mutations in the viral mRNA sequence or variations in relative tRNA abundances. The model is sensitive to the size of the translating ribosome and to assumptions about the unfolding pathway of the stimulatory structure. As knowledge in the field of RNA structure prediction grows, that knowledge can be incorporated into the model developed here to make improved predictions. The single-ribosome translation model has been extended to polysomes by including initiation and termination rates and an exclusion principle, and allowing the stimulatory structure to refold on an appropriate timescale. The predicted frameshift efficiency for a given mRNA can be tuned by varying the ribosome density on the mRNA. This finding affects the interpretation of frameshift efficiencies measured in the lab. In the parameter regime where translation is initiation-limited, the frameshift efficiency also depends on the structure refolding rate, which determines the availability of the downstream structure for stimulating –1 frameshifts. Furthermore, there is a trade-off between frameshift efficiency and protein synthesis rate.
|
60 |
Stochastic modeling of eukaryotic transcription at the single nucleotide levelVashishtha, Saurabh January 2011 (has links)
DNA is the genetic material of a cell and is copied in the form of pre-mRNA through
transcription in eukaryotes. RNA polymerase II is responsible for the transcription of all
genes that express proteins. Transcription is a significant source of the stochasticity in
gene expression. In this thesis, I discuss the development of a biochemically detailed
model of eukaryotic transcription, which includes pre-initiation complex (PIC) assembly,
abortive initiation, promoter-proximal pausing and termination as the points that can be
slow steps for transcription. The stochastic properties of this model are studied in detail
by stochastic simulations with some preliminary mathematical analysis. The results of
this model suggest that PIC assembly can play the most significant role in affecting the
transcription dynamics. In addition, promoter-proximal pausing has been identified as a
potential noise regulatory step in eukaryotic transcription. These results show excellent
agreement with many experimental studies. / x, 107 leaves : ill. ; 29 cm
|
Page generated in 0.0824 seconds