• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The asymptotic stability of stochastic kernel operators

Brown, Thomas John 06 1900 (has links)
A stochastic operator is a positive linear contraction, P : L1 --+ L1, such that llPfII2 = llfll1 for f > 0. It is called asymptotically stable if the iterates pn f of each density converge in the norm to a fixed density. Pf(x) = f K(x,y)f(y)dy, where K( ·, y) is a density, defines a stochastic kernel operator. A general probabilistic/ deterministic model for biological systems is considered. This leads to the LMT operator P f(x) = Jo - Bx H(Q(>.(x)) - Q(y)) dy, where -H'(x) = h(x) is a density. Several particular examples of cell cycle models are examined. An operator overlaps supports iffor all densities f,g, pn f APng of 0 for some n. If the operator is partially kernel, has a positive invariant density and overlaps supports, it is asymptotically stable. It is found that if h( x) > 0 for x ~ xo ~ 0 and ["'" x"h(x) dx < liminf(Q(A(x))" - Q(x)") for a E (0, 1] lo x-oo then P is asymptotically stable, and an opposite condition implies P is sweeping. Many known results for cell cycle models follow from this. / Mathematical Science / M. Sc. (Mathematics)
2

The asymptotic stability of stochastic kernel operators

Brown, Thomas John 06 1900 (has links)
A stochastic operator is a positive linear contraction, P : L1 --+ L1, such that llPfII2 = llfll1 for f > 0. It is called asymptotically stable if the iterates pn f of each density converge in the norm to a fixed density. Pf(x) = f K(x,y)f(y)dy, where K( ·, y) is a density, defines a stochastic kernel operator. A general probabilistic/ deterministic model for biological systems is considered. This leads to the LMT operator P f(x) = Jo - Bx H(Q(>.(x)) - Q(y)) dy, where -H'(x) = h(x) is a density. Several particular examples of cell cycle models are examined. An operator overlaps supports iffor all densities f,g, pn f APng of 0 for some n. If the operator is partially kernel, has a positive invariant density and overlaps supports, it is asymptotically stable. It is found that if h( x) > 0 for x ~ xo ~ 0 and ["'" x"h(x) dx < liminf(Q(A(x))" - Q(x)") for a E (0, 1] lo x-oo then P is asymptotically stable, and an opposite condition implies P is sweeping. Many known results for cell cycle models follow from this. / Mathematical Science / M. Sc. (Mathematics)
3

Primene polugrupa operatora u nekim klasama Košijevih početnih problema / Applications of Semigroups of Operators in Some Classes of Cauchy Problems

Žigić Milica 22 December 2014 (has links)
<p>Doktorska disertacija je posvećena primeni teorije polugrupa operatora na re&scaron;avanje dve klase Cauchy-jevih početnih problema. U prvom delu smo<br />ispitivali parabolične stohastičke parcijalne diferencijalne jednačine (SPDJ-ne), odredjene sa dva tipa operatora: linearnim zatvorenim operatorom koji<br />generi&scaron;e <em>C</em><sub>0</sub>&minus;polugrupu i linearnim ograničenim operatorom kombinovanim<br />sa Wick-ovim proizvodom. Svi stohastički procesi su dati Wiener-It&ocirc;-ovom<br />haos ekspanzijom. Dokazali smo postojanje i jedinstvenost re&scaron;enja ove klase<br />SPDJ-na. Posebno, posmatrali smo i stacionarni slučaj kada je izvod po<br />vremenu jednak nuli. U drugom delu smo konstruisali kompleksne stepene<br /><em>C</em>-sektorijalnih operatora na sekvencijalno kompletnim lokalno konveksnim<br />prostorima. Kompleksne stepene operatora smo posmatrali kao integralne<br />generatore uniformno ograničenih analitičkih <em>C</em>-regularizovanih rezolventnih<br />familija, i upotrebili dobijene rezultate na izučavanje nepotpunih Cauchy-jevih problema vi&scaron;3eg ili necelog reda.</p> / <p>The doctoral dissertation is devoted to applications of the theory<br />of semigroups of operators on two classes of Cauchy problems. In the first<br />part, we studied parabolic stochastic partial differential equations (SPDEs),<br />driven by two types of operators: one linear closed operator generating a<br /><em>C</em><sub>0</sub>&minus;semigroup and one linear bounded operator with Wick-type multipli-cation. All stochastic processes are considered in the setting of Wiener-It&ocirc;<br />chaos expansions. We proved existence and uniqueness of solutions for this<br />class of SPDEs. In particular, we also treated the stationary case when the<br />time-derivative is equal to zero. In the second part, we constructed com-plex powers of <em>C</em>&minus;sectorial operators in the setting of sequentially complete<br />locally convex spaces. We considered these complex powers as the integral<br />generators of equicontinuous analytic <em>C</em>&minus;regularized resolvent families, and<br />incorporated the obtained results in the study of incomplete higher or frac-tional order Cauchy problems.</p>

Page generated in 0.0919 seconds