• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 59
  • 19
  • 9
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 1
  • 1
  • Tagged with
  • 111
  • 111
  • 38
  • 29
  • 22
  • 21
  • 21
  • 19
  • 17
  • 13
  • 12
  • 12
  • 11
  • 11
  • 11
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
91

Stochastic distribution tracking control for stochastic non-linear systems via probability density function vectorisation

Liu, Y., Zhang, Qichun, Yue, H. 08 February 2022 (has links)
Yes / This paper presents a new control strategy for stochastic distribution shape tracking regarding non-Gaussian stochastic non-linear systems. The objective can be summarised as adjusting the probability density function (PDF) of the system output to any given desired distribution. In order to achieve this objective, the system output PDF has first been formulated analytically, which is time-variant. Then, the PDF vectorisation has been implemented to simplify the model description. Using the vector-based representation, the system identification and control design have been performed to achieve the PDF tracking. In practice, the PDF evolution is difficult to implement in real-time, thus a data-driven extension has also been discussed in this paper, where the vector-based model can be obtained using kernel density estimation (KDE) with the real-time data. Furthermore, the stability of the presented control design has been analysed, which is validated by a numerical example. As an extension, the multi-output stochastic systems have also been discussed for joint PDF tracking using the proposed algorithm, and the perspectives of advanced controller have been discussed. The main contribution of this paper is to propose: (1) a new sampling-based PDF transformation to reduce the modelling complexity, (2) a data-driven approach for online implementation without model pre-training, and (3) a feasible framework to integrate the existing control methods. / This paper is partly supported by National Science Foundation of China under Grants (61603262 and 62073226), Liaoning Province Natural Science Joint Foundation in Key Areas (2019- KF-03-08), Natural Science Foundation of Liaoning Province (20180550418), Liaoning BaiQianWan Talents Program, i5 Intelligent Manufacturing Institute Fund of Shenyang Institute of Technology (i5201701), Central Government Guides Local Science and Technology Development Funds of Liaoning Province (2021JH6/10500137).
92

Alcançabilidade e controlabilidade médias para sistemas lineares com saltos markovianos a tempo contínuo / Average reachability and average controllability for continuous-time markov jum linear systems

Narvaez, Alfredo Rafael Roa 06 March 2015 (has links)
Neste trabalho estudamos as noções de alcançabilidade e controlabilidade para sistemas lineares a tempo contínuo com perturbações aditivas e saltos nos parâmetros sujeitos a uma cadeia de Markov geral. Definimos conceitos de alcançabilidade e controlabilidade médios de maneira natural exigindo que os valores esperados dos gramianos correspondentes sejam definidos positivos. Visando obter uma condição testável para ambos os conceitos, introduzimos conjuntos de matrizes de alcançabilidade e de controlabilidade para esta classe de sistemas e usamos certas propriedades de invariância para mostrar que: o sistema é alcançável em média, e, analogamente, controlável em média, se e somente se as matrizes respectivas, de alcançabilidade e de controlabilidade, têm posto completo. Usamos alcançabilidade média de sistemas para mostrar que a matriz de segundo momento do estado é definida positiva com uma margem uniforme. Uma consequência deste resultado no problema de estimação linear do estado é que a matriz de covariância do erro de estimação é positiva definida em média, no sentido que existe um nível mínimo de ruído nas estimativas. Na sequência, para estimadores lineares markovianos, estudamos a limitação do valor esperado da matriz de covariância do erro para mostrar que o filtro é estável num certo sentido, sendo esta uma propriedade desejável em aplicações reais. Quanto às aplicações da controlabilidade média, usamos este conceito para estabelecer condições necessárias e suficientes que garantem a existência de um processo de controle que leva a componente contínua do estado do sistema para a origem em tempo finito e com probabilidade positiva. / In this work we study the reachability and controllability notions for continuous-time linear systems with exogenous inputs and jump parameters driven by a quite general Markov chain. We define a rather natural average reachability and controllability concepts by requiring that the associated gramians are average positive definite, respectively. Aiming at testable conditions for each concept, we introduce certain sets of matrices linked with the gramians, and employ some invariance properties to find rank-based conditions. We show for average reachable systems that the state second moment is positive definite. One consequence of this result in the context of linear estimation for reachable systems is that the expectation of the error covariance matrix is positive definite. Moreover, for linear markovian filters we study the average boundedness of the error covariance matrix to show that the filter is stable in an appropriate sense, which consists in a property that is desirable in real applications. Regarding the average controllability concept, we show that it is a necessary and sufficient condition for the feasibility of the following control problem: find a control process that drives the continuous component of the state to zero in finite time with positive probability.
93

Statistical properties and scaling of the Lyapunov exponents in stochastic systems

Zillmer, Rüdiger January 2003 (has links)
Die vorliegende Arbeit umfaßt drei Abhandlungen, welche allgemein mit einer stochastischen Theorie für die Lyapunov-Exponenten befaßt sind. Mit Hilfe dieser Theorie werden universelle Skalengesetze untersucht, die in gekoppelten chaotischen und ungeordneten Systemen auftreten. <br /> <br /> Zunächst werden zwei zeitkontinuierliche stochastische Modelle für schwach gekoppelte chaotische Systeme eingeführt, um die Skalierung der Lyapunov-Exponenten mit der Kopplungsstärke ('coupling sensitivity of chaos') zu untersuchen. Mit Hilfe des Fokker-Planck-Formalismus werden Skalengesetze hergeleitet, die von Ergebnissen numerischer Simulationen bestätigt werden. <br /> <br /> Anschließend wird gezeigt, daß 'coupling sensitivity' im Fall gekoppelter ungeordneter Ketten auftritt, wobei der Effekt sich durch ein singuläres Anwachsen der Lokalisierungslänge äußert. Numerische Ergebnisse für gekoppelte Anderson-Modelle werden bekräftigt durch analytische Resultate für gekoppelte raumkontinuierliche Schrödinger-Gleichungen. Das resultierende Skalengesetz für die Lokalisierungslänge ähnelt der Skalierung der Lyapunov-Exponenten gekoppelter chaotischer Systeme. <br /> <br /> Schließlich wird die Statistik der exponentiellen Wachstumsrate des linearen Oszillators mit parametrischem Rauschen studiert. Es wird gezeigt, daß die Verteilung des zeitabhängigen Lyapunov-Exponenten von der Normalverteilung abweicht. Mittels der verallgemeinerten Lyapunov-Exponenten wird der Parameterbereich bestimmt, in welchem die Abweichungen von der Normalverteilung signifikant sind und Multiskalierung wesentlich wird. / This work incorporates three treatises which are commonly concerned with a stochastic theory of the Lyapunov exponents. With the help of this theory universal scaling laws are investigated which appear in coupled chaotic and disordered systems. <br /> <br /> First, two continuous-time stochastic models for weakly coupled chaotic systems are introduced to study the scaling of the Lyapunov exponents with the coupling strength (coupling sensitivity of chaos). By means of the the Fokker-Planck formalism scaling relations are derived, which are confirmed by results of numerical simulations. <br /> <br /> Next, coupling sensitivity is shown to exist for coupled disordered chains, where it appears as a singular increase of the localization length. Numerical findings for coupled Anderson models are confirmed by analytic results for coupled continuous-space Schrödinger equations. The resulting scaling relation of the localization length resembles the scaling of the Lyapunov exponent of coupled chaotic systems. <br /> <br /> Finally, the statistics of the exponential growth rate of the linear oscillator with parametric noise are studied. It is shown that the distribution of the finite-time Lyapunov exponent deviates from a Gaussian one. By means of the generalized Lyapunov exponents the parameter range is determined where the non-Gaussian part of the distribution is significant and multiscaling becomes essential.
94

Estimation and Control of Resonant Systems with Stochastic Disturbances

Nauclér, Peter January 2008 (has links)
The presence of vibration is an important problem in many engineering applications. Various passive techniques have traditionally been used in order to reduce waves and vibrations, and their harmful effects. Passive techniques are, however, difficult to apply in the low frequency region. In addition, the use of passive techniques often involve adding mass to the system, which is undesirable in many applications. As an alternative, active techniques can be used to manipulate system dynamics and to control the propagation of waves and vibrations. This thesis deals with modeling, estimation and active control of systems that have resonant dynamics. The systems are exposed to stochastic disturbances. Some of them excite the system and generate vibrational responses and other corrupt measured signals. Feedback control of a beam with attached piezoelectrical elements is studied. A detailed modeling approach is described and system identification techniques are employed for model order reduction. Disturbance attenuation of a non-measured variable shows to be difficult. This issue is further analyzed and the problems are shown to depend on fundamental design limitations. Feedforward control of traveling waves is also considered. A device with properties analogous to those of an electrical diode is introduced. An `ideal´ feedforward controller based on the mechanical properties of the system is derived. It has, however, poor noise rejection properties and it therefore needs to be modified. A number of feedforward controllers that treat the measurement noise in a statistically sound way are derived. Separation of overlapping traveling waves is another topic under investigation. This operation also is sensitive to measurement noise. The problem is thoroughly analyzed and Kalman filtering techniques are employed to derive wave estimators with high statistical performance. Finally, a nonlinear regression problem with close connections to unbalance estimation of rotating machinery is treated. Different estimation techniques are derived and analyzed with respect to their statistical accuracy. The estimators are evaluated using the example of separator balancing.
95

Reduced Order Modeling Of Stochastic Dynamic Systems

Hegde, Manjunath Narayan 09 1900 (has links)
Uncertainties in both loading and structural characteristics can adversely affect the response and reliability of a structure. Parameter uncertainties in structural dynamics can arise due to several sources. These include variations due to intrinsic material property variability, measurement errors, manufacturing and assembly errors, differences in modeling and solution procedures. Problems of structural dynamics with randomly distributed spatial inhomogeneities in elastic, mass, and damping properties, have been receiving wide attention. Several mathematical and computational issues include discretization of random fields, characterization of random eigensolutions, inversion of random matrices, solutions of stochastic boundary-value problems, and description of random matrix products. Difficulties are encountered when one has to include interaction between nonlinear and stochastic system characteristics, or if one is interested in controlling the system response. The study of structural systems including the effects of system nonlinearity in the presence of parameter uncertainties presents serious challenges and difficulties to designers and reliability engineers. In the analysis of large structures, the situation for substructuring frequently arises due to the repetition of identical assemblages (substructures), within a structure, and the general need to reduce the size of the problem, particularly in the case of non-linear inelastic dynamic analysis. A small reduction in the model size can have a large effect on the storage and time requirement. A primary structural dynamic system may be coupled to subsystems such as piping systems in a nuclear reactor or in a chemical plant. Usually subsystem in itself is quite complex and its modeling with finite elements may result in a large number of degrees of freedom. The reduced subsystem model should be of low-order yet capturing the essential dynamics of the subsystem for useful integration with the primary structure. There are two major issues to be studied: one, techniques for analyzing a complex structure into component subsystems, analyzing the individual sub-system dynamics, and from thereon determining the dynamics of the structure after assembling the subsystems. The nonlinearity due to support gap effects such as supports for piping system in nuclear reactors further complicates the problem. The second is the issue of reviewing the methods for reducing the model-order of the component subsystems such that the order of the global dynamics, after assembly, is within some predefined limits. In the reliability analysis of complex engineering structures, a very large number of the system parameters have to be considered as random variables. The parameter uncertainties are modeled as random variables and are assumed to be time independent. Here the problem would be to reduce the number of random variables without sacrificing the accuracy of the reliability analysis. The procedure involves the reduction of the size of the vector of random variables before the calculation of failure probability. The objectives of this thesis are: 1.To use the available model reduction techniques in order to effectively reduce the size of the finite element model, and hence, compare the dynamic responses from such models. 2.Study of propagation of uncertainties in the reduced order/coupled stochastic finite element dynamic models. 3.Addressing the localized nonlinearities due to support gap effects in the built up structures, and also in cases of sudden change in soil behaviour under the footings. The irregularity in soil behaviour due to lateral escape of soil due to failure of quay walls/retaining walls/excavation in neighbouring site, etc. 4.To evolve a procedure for the reduction of size of the vector containing the random variables before the calculation of failure probability. In the reliability analysis of complex engineering structures, a very large number of the system parameters are considered to be random variables. Here the problem would be to reduce the number of random variables without sacrificing the accuracy of the reliability analysis. 5.To analyze the reduced nonlinear stochastic dynamic system (with phase space reduction), and effectively using the network pruning technique for the solution, and also to use filter theory (wavelet theory) for reducing the input earthquake record to save computational time and cost. It is believed that the techniques described provide highly useful insights into the manner structural uncertainties propagate. The cross-sectional area, length, modulus of elasticity and mass density of the structural components are assumed as random variables. Since both the random and design variables are expressed in a discretized parameter space, the stochastic sensitivity function can be modeled in a parallel way. The response of the structures in frequency domain is considered. This thesis is organized into seven chapters. This thesis deals with the reduced order models of the stochastic structural systems under deterministic/random loads. The Chapter 1 consists of a brief introduction to the field of study. In Chapter 2, an extensive literature survey based on the previous works on model order reduction and the response variability of the structural dynamic systems is presented. The discussion on parameter uncertainties, stochastic finite element method, and reliability analysis of structures is covered. The importance of reducing mechanical models for dynamic response variability, the systems with high-dimensional variables and reduction in random variables space, nonlinearity issues are discussed. The next few chapters from Chapter 3 to Chapter 6 are the main contributions in this thesis, on model reduction under various situations for both linear and nonlinear systems. After forming a framework for model reduction, local nonlinearities like support gaps in structural elements are considered. Next, the effect of reduction in number of random variables is tackled. Finally influence of network pruning and decomposition of input signals into low and high frequency parts are investigated. The details are as under. In Chapter 3, the issue of finite element model reduction is looked into. The generalized finite element analysis of the full model of a randomly parametered structure is carried out under a harmonic input. Different well accepted finite element model reduction techniques are used for FE model reduction in the stochastic dynamic system. The structural parameters like, mass density and modulus of elasticity of the structural elements are considered to be non-Gaussian random variables. Since the variables considered here are strictly positive, the probabilistic distribution of the random variables is assumed to be lognormal. The sensitivities in the eigen solutions are compared. The response statistics based on response of models in frequency domain are compared. The dynamic responses of the full FE model, separated into real and imaginary parts, are statistically compared with those from reduced FE models. Monte Carlo simulation is done to validate the analysis results from SFEM. In Chapter 4, the problem of coupling of substructures in a large and complex structure, and FE model reduction, e.g., component mode synthesis (CMS) is studied in the stochastic environment. Here again, the statistics of the response from full model and reduced models are compared. The issues of non-proportional damping, support gap effects and/local nonlinearity are considered in the stochastic sense. Monte Carlo simulation is done to validate the analysis results from SFEM. In Chapter 5, the reduction in size of the vector of random variables in the reliability analysis is attempted. Here, the relative entropy/ K-L divergence/mutual information, between the random variables is considered as a measure for ranking of random variables to study the influence of each random variable on the response/reliability of the structure. The probabilistic distribution of the random variables is considered to be lognormal. The reliability analysis is carried out with the well known Bucher and Bourgund algorithm (1990), along with the probabilistic model reduction of the stochastic structural dynamic systems, within the framework of response surface method. The reduction in number of random variables reduces the computational effort required to construct an approximate closed form expression in response surface approach. In Chapter 6, issues regarding the nonlinearity effects in the reduced stochastic structural dynamic systems (with phase space reduction), along with network pruning are attempted. The network pruning is also adopted for reduction in computational effort. The earthquake accelerogram is decomposed using Fast Mallat Algorithm (Wavelet theory) into smaller number of points and the dynamic analysis of structures is carried out against these reduced points, effectively reducing the computational time and cost. Chapter 7 outlines the contributions made in this thesis, together with a few suggestions made for further research. All the finite element codes were developed using MATLAB5.3. Final pages of the thesis contain the references made in the preparation of this thesis.
96

Rigorous System-level Modeling and Performance Evaluation for Embedded System Design / Modélisation et Évaluation de Performance pour la Conception des Systèmes Embarqués : Approche Rigoureuse au Niveau Système

Nouri, Ayoub 08 April 2015 (has links)
Les systèmes embarqués ont évolué d'une manière spectaculaire et sont devenus partie intégrante de notre quotidien. En réponse aux exigences grandissantes en termes de nombre de fonctionnalités et donc de flexibilité, les parties logicielles de ces systèmes se sont vues attribuer une place importante malgré leur manque d'efficacité, en comparaison aux solutions matérielles. Par ailleurs, vu la prolifération des systèmes nomades et à ressources limités, tenir compte de la performance est devenu indispensable pour bien les concevoir. Dans cette thèse, nous proposons une démarche rigoureuse et intégrée pour la modélisation et l'évaluation de performance tôt dans le processus de conception. Cette méthode permet de construire des modèles, au niveau système, conformes aux spécifications fonctionnelles, et intégrant les contraintes non-fonctionnelles de l'environnement d'exécution. D'autre part, elle permet d'analyser quantitativement la performance de façon rapide et précise. Cette méthode est guidée par les modèles et se base sur le formalisme $mathcal{S}$BIP que nous proposons pour la modélisation stochastique selon une approche formelle et par composants. Pour construire des modèles conformes au niveau système, nous partons de modèles purement fonctionnels utilisés pour générer automatiquement une implémentation distribuée, étant donnée une architecture matérielle cible et un schéma de répartition. Dans le but d'obtenir une description fidèle de la performance, nous avons conçu une technique d'inférence statistique qui produit une caractérisation probabiliste. Cette dernière est utilisée pour calibrer le modèle fonctionnel de départ. Afin d'évaluer la performance de ce modèle, nous nous basons sur du model checking statistique que nous améliorons à l'aide d'une technique d'abstraction. Nous avons développé un flot de conception qui automatise la majorité des phases décrites ci-dessus. Ce flot a été appliqué à différentes études de cas, notamment à une application de reconnaissance d'image déployée sur la plateforme multi-cœurs STHORM. / In the present work, we tackle the problem of modeling and evaluating performance in the context of embedded systems design. These have become essential for modern societies and experienced important evolution. Due to the growing demand on functionality and programmability, software solutions have gained in importance, although known to be less efficient than dedicated hardware. Consequently, considering performance has become a must, especially with the generalization of resource-constrained devices. We present a rigorous and integrated approach for system-level performance modeling and analysis. The proposed method enables faithful high-level modeling, encompassing both functional and performance aspects, and allows for rapid and accurate quantitative performance evaluation. The approach is model-based and relies on the $mathcal{S}$BIP formalism for stochastic component-based modeling and formal verification. We use statistical model checking for analyzing performance requirements and introduce a stochastic abstraction technique to enhance its scalability. Faithful high-level models are built by calibrating functional models with low-level performance information using automatic code generation and statistical inference. We provide a tool-flow that automates most of the steps of the proposed approach and illustrate its use on a real-life case study for image processing. We consider the design and mapping of a parallel version of the HMAX models algorithm for object recognition on the STHORM many-cores platform. We explored timing aspects and the obtained results show not only the usability of the approach but also its pertinence for taking well-founded decisions in the context of system-level design.
97

Model Validation and Discovery for Complex Stochastic Systems

Jha, Sumit Kumar 02 July 2010 (has links)
In this thesis, we study two fundamental problems that arise in the modeling of stochastic systems: (i) Validation of stochastic models against behavioral specifications such as temporal logics, and (ii) Discovery of kinetic parameters of stochastic biochemical models from behavioral specifications. We present a new Bayesian algorithm for Statistical Model Checking of stochastic systems based on a sequential version of Jeffreys’ Bayes Factor test. We argue that the Bayesian approach is more suited for application do- mains like systems biology modeling, where distributions on nuisance parameters and priors may be known. We prove that our Bayesian Statistical Model Checking algorithm terminates for a large subclass of prior probabilities. We also characterize the Type I/II errors associated with our algorithm. We experimentally demonstrate that this algorithm is suitable for the analysis of complex biochemical models like those written in the BioNetGen language. We then argue that i.i.d. sampling based Statistical Model Checking algorithms are not an effective way to study rare behaviors of stochastic models and present another Bayesian Statistical Model Checking algorithm that can incorporate non-i.i.d. sampling strategies. We also present algorithms for synthesis of chemical kinetic parameters of stochastic biochemical models from high level behavioral specifications. We consider the setting where a modeler knows facts that must hold on the stochastic model but is not confident about some of the kinetic parameters in her model. We suggest algorithms for discovering these kinetic parameters from facts stated in appropriate formal probabilistic specification languages. Our algorithms are based on our theoretical results characterizing the probability of a specification being true on a stochastic biochemical model. We have applied this algorithm to discover kinetic parameters for biochemical models with as many as six unknown parameters.
98

Rigorous System-level Modeling and Performance Evaluation for Embedded System Design / Modélisation et Évaluation de Performance pour la Conception des Systèmes Embarqués : Approche Rigoureuse au Niveau Système

Nouri, Ayoub 08 April 2015 (has links)
Les systèmes embarqués ont évolué d'une manière spectaculaire et sont devenus partie intégrante de notre quotidien. En réponse aux exigences grandissantes en termes de nombre de fonctionnalités et donc de flexibilité, les parties logicielles de ces systèmes se sont vues attribuer une place importante malgré leur manque d'efficacité, en comparaison aux solutions matérielles. Par ailleurs, vu la prolifération des systèmes nomades et à ressources limités, tenir compte de la performance est devenu indispensable pour bien les concevoir. Dans cette thèse, nous proposons une démarche rigoureuse et intégrée pour la modélisation et l'évaluation de performance tôt dans le processus de conception. Cette méthode permet de construire des modèles, au niveau système, conformes aux spécifications fonctionnelles, et intégrant les contraintes non-fonctionnelles de l'environnement d'exécution. D'autre part, elle permet d'analyser quantitativement la performance de façon rapide et précise. Cette méthode est guidée par les modèles et se base sur le formalisme $mathcal{S}$BIP que nous proposons pour la modélisation stochastique selon une approche formelle et par composants. Pour construire des modèles conformes au niveau système, nous partons de modèles purement fonctionnels utilisés pour générer automatiquement une implémentation distribuée, étant donnée une architecture matérielle cible et un schéma de répartition. Dans le but d'obtenir une description fidèle de la performance, nous avons conçu une technique d'inférence statistique qui produit une caractérisation probabiliste. Cette dernière est utilisée pour calibrer le modèle fonctionnel de départ. Afin d'évaluer la performance de ce modèle, nous nous basons sur du model checking statistique que nous améliorons à l'aide d'une technique d'abstraction. Nous avons développé un flot de conception qui automatise la majorité des phases décrites ci-dessus. Ce flot a été appliqué à différentes études de cas, notamment à une application de reconnaissance d'image déployée sur la plateforme multi-cœurs STHORM. / In the present work, we tackle the problem of modeling and evaluating performance in the context of embedded systems design. These have become essential for modern societies and experienced important evolution. Due to the growing demand on functionality and programmability, software solutions have gained in importance, although known to be less efficient than dedicated hardware. Consequently, considering performance has become a must, especially with the generalization of resource-constrained devices. We present a rigorous and integrated approach for system-level performance modeling and analysis. The proposed method enables faithful high-level modeling, encompassing both functional and performance aspects, and allows for rapid and accurate quantitative performance evaluation. The approach is model-based and relies on the $mathcal{S}$BIP formalism for stochastic component-based modeling and formal verification. We use statistical model checking for analyzing performance requirements and introduce a stochastic abstraction technique to enhance its scalability. Faithful high-level models are built by calibrating functional models with low-level performance information using automatic code generation and statistical inference. We provide a tool-flow that automates most of the steps of the proposed approach and illustrate its use on a real-life case study for image processing. We consider the design and mapping of a parallel version of the HMAX models algorithm for object recognition on the STHORM many-cores platform. We explored timing aspects and the obtained results show not only the usability of the approach but also its pertinence for taking well-founded decisions in the context of system-level design.
99

Efeito da quantidade finita de osciladores em sistemas estocásticos de dois níveis

Pinto, Italo ivo Lima Dias 21 October 2014 (has links)
Made available in DSpace on 2015-05-14T12:14:15Z (GMT). No. of bitstreams: 1 arquivototal.pdf: 705049 bytes, checksum: 4794f7004746261efe9996d47989dd1f (MD5) Previous issue date: 2014-10-21 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES / In this thesis, we presented models of two state stochastic systems which interact through a global coupling, in a way that each population unit contributes to the state transition rates of the other units. We presented two models of global coupling in which is possible to observe a phase transition of a regime with units equally distributed on the two states to a phase where there is an agglomeration of units in one of the states. In the first coupling model this transition occurs in a continuous way as we increase the coupling parameter. Through a mean field approximation we shown that this phase transition occurs due to a subcritical pitchfork bifurcation where one of the phases is associated to a monostable regime (units equally distributed in the two states) and the other phase to a symmetric bistable regime (majority of the units agglomerated in one of the states). On the other hand the other model presents a discontinuous phase transition as we increase the coupling parameter, the mean field approach shows that this phase transition occurs due a supercritical pitchfork bifurcation where we have a monostable regime and a tristable regime presenting symmetry in relation to the central potential well, as the coupling parameter is increased the central stability reduces while the two other states becomes more stable. It was shown that for both coupling models, when we have a finite number of oscillators the system presents a multiplicative noise structure. This noise structure turns the stable states obtained with the mean field approximation on metastable states, also the fluctuations due to a finite number of units breaks the symmetry in the multistable regimes, this symmetry break occurs due to the asymmetric intensity of the fluctuations. We also obtained a Fokker-Planck equation for this system and the probability distribution of the number of units in each state, from this distribution it was possible to build a phase diagram for the phase transition from themonostable regime to the regime that presents multistability. This transition is characterized in terms of the coupling parameter and the number of units in the system. / Nesta tese, apresentamos modelos de sistemas estocásticos de dois níveis que interagem através de um acoplamento global, de forma que o estado ocupado por cada unidade da população influi na taxa de transição de estado das demais. Apresentamos dois modelos de acoplamento global onde é possível observar uma transição de fase de um regime onde as unidades estão distribuídas igualmente entre os dois estados para uma fase onde há a aglomeração de unidades em um dos estados. Em um dos modelos de acoplamento essa transição ocorre de forma continua com o parâmetro de acoplamento. Através de uma aproximação de campo médio mostramos que essa transição de fase ocorre devido a uma bifurcação de forquilha sub-crítica onde uma das fases ´e associada a um regime monopolista (unidades igualmente divididas entre os dois estados) e a outra fase a um regime bioestavel simétrico (maior parte das unidades aglomeradas em um dos estados). J´a o outro modelo apresenta uma transic¸ ao de fase descont´ınua com o par ametro de acoplamento. A abordagem de campo m´edio revela que essa transic¸ ao de fase ocorre atrav´es de uma bifurcac¸ ao de forquilha supercr´ıtica onde temos um regimemonoest´avel e um regime triest´avel apresentando simetria com relac¸ ao ao poc¸o de potencial central e a medida que o par ametro de acoplamento ´e aumentado a estabilidade central diminui enquanto os outros dois estados se tornam mais est´aveis. Foi mostrado que para ambos os modelos de acoplamento, quando temos uma quantidade finita de osciladores o sistema apresenta uma estrutura de ru´ıdo multiplicativo. Essa estrutura de ru´ıdo torna os estados est´aveis obtidos com a aproximac¸ ao de campo m´edio em estados metaest´aveis. Tamb´em foi mostrado que as flutuac¸ oes devido a quantidade finita de unidades quebra a simetria nos regimes com multiestabilidade, essa quebra de simetria ocorre devido a assimetrias da intensidade das flutuac¸ oes. Obtemos tamb´em uma equac¸ ao de Fokker-Planck para esse sistema. A soluc¸ ao da equac¸ ao de Fokker-Planck nos d´a a distribuic¸ ao de probabilidade da quantidade de unidades em cada estado. Essa distribuic¸ ao torna poss´ıvel a construc¸ ao de um diagrama de fases para a transic¸ ao de fase dos regimes monoest ´aveis para os regimes que apresentam multiestabilidade. Essa transic¸ ao ´e caracterizada em termos do par ametro de acoplamento e da quantidade de unidades do sistema.
100

Analise dinamica de problemas não deterministicos usando metodos baseados em conjuntos nebulosos / Dynamic analysis of non-deterministic problems using fuzzy set based methods

Nunes, Ronaldo Fernandes 27 June 2005 (has links)
Orientador: Jose Roberto de França Arruda / Tese (doutorado) - Universidade Estadual de Campinas, Faculdade de Engenharia Mecanica / Made available in DSpace on 2018-08-05T10:01:28Z (GMT). No. of bitstreams: 1 Nunes_RonaldoFernandes_D.pdf: 2368458 bytes, checksum: 01da7061fcacf61682f9aa00dceb6837 (MD5) Previous issue date: 2005 / Resumo: Neste trabalho, o problema da análise dinâmica de estruturas em médias freqüências é abordado. Em geral, métodos numéricos tais como elementos finitos e elementos de contorno não são apropriados para tratar estes casos. As principais razões são a necessidade do refinamento das malhas com o aumento da freqüência e o cálculo da influência dos parâmetros incertos, cujo efeito em particular, para médias e altas freqüências, tende a ser significativo. O problema do refinamento do modelo pode ser superado através de métodos semi-analíticos, como por exemplo, o método do elemento espectral. Em relação à simulação dos sistemas com parâmetros de entrada incertos, métodos baseados em conjuntos nebulosos e métodos probabilísticos são adotados. Nesta tese, uma proposta combinando o método do elemento espectral com conjuntos nebulosos é conduzida. O principal foco deste trabalho é apresentar uma nova abordagem para o problema em médias freqüências. Neste contexto, funções de resposta em freqüência são adotadas para representar o efeito dos parâmetros de entrada não determinísticos na resposta dinâmica de estruturas. Para ilustrar o procedimento proposto, exemplos numéricos são tratados, como o caso simples de uma placa retangular reforçada com vigas e também o caso de uma estrutura do tipo pórtico / Abstract: It is well-known that, in the mid-frequency range, numerical methods such as finite and boundary elements are not suitable for structural dynamic analysis. One of the reasons is the fine mesh resolution required to accurately model the physical problem, leading to large computational models. The other reason is associated with the difficulty in estimating the response statistics for system parameter variations. The mesh refinement problem can be addressed using semi-analytical methods, such as the spectral element method. However, in general, these methods are very limited with respect to the geometry and boundary conditions that can be treated. With respect to parameter variation, the simulation of systems with uncertain parameters has in the past been addressed with different techniques, such as finite elements applied to stochastic problems and fuzzy set based methods. In this thesis, the spectral element method is combined with a special implementation of a fuzzy set based method that avoids the well-know effect of overestimation in interval computations. In this regard, some efficient alternatives, such as the transformation method and the sparse grids approach are proposed. In this work, the main goal is to provide alternatives to address dynamic problems under uncertainty in the mid-frequency range. In this context, envelopes for frequency response functions are used to represent the effect of non-deterministic input parameters in the dynamic response of structures. To illustrate he proposed procedure, numerical examples are treated, such as a simple rectangular plate reinforced with beams and a frame-type model / Doutorado / Mecanica dos Sólidos e Projeto Mecanico / Doutor em Engenharia Mecânica

Page generated in 0.0592 seconds