Spelling suggestions: "subject:"top & Go"" "subject:"stop & Go""
1 |
Kortdistansradar för ACC-system / Short Range Radar for ACC-systemsBredberg, Linus January 2008 (has links)
I denna rapport redogörs för en implementering av fusion mellan kortdistanssensorer. Syftet med denna implementering är att erhålla Stop & Go-funktionalitet till den adaptiva farthållaren som idag finns som tillval i Scanias lastbilar. Adaptiv farthållning, ACC, är en funktion som automatiskt anpassar fordonets hastighet ifall detta kommer ikapp ett annat fordon som färdas långsammare än den inställda hastigheten. Scanias system använder sig idag av en långdistanssensor som ser långt men har smalt synfält. Genom att komplettera denna med kortdistanssensorer, som ser kort men brett, kan önskvärt synfält i närområdet för att säkert kunna implementera Stop & Go-funktionen uppnås. Sensorfusion bygger på principen att två eller fler sensorer som ser samma sak ger en mer korrekt bild av verkligheten än en enskild. Fusionen kan genomföras på många olika sätt. I rapporten beskrivs tre metoder övergripligt; Bayesiska nätverk, auktionsalgoritmen samt Gating. I implementeringen används gatingmetoden. Initialt implementeras en målspårningsalgoritm med kalmanfilter. Efter uppdatering av sensormjukvaran väljs dock denna bort eftersom sensorernas interna målspårning då anses som tillräcklig. En modell med sensorfusionen och målselekteringen byggs i Simulink och programmeras sedan in i en hårdvaruenhet. Syftet med detta är att kunna utvärdera funktionen i ett prototypfordon. Inledningsvis rapporteras enbart korrelerade mål från modellen. För mer kontinuerlig målföljning, främst i kurvor, implementeras därefter en algoritm som även tar hänsyn till enskilda sensorers observationer. Dessa accpeteras dock först efter en viss valideringstid eftersom denna information har lägre konfidens än korrelerade mål. Provkörningar visar att målföljningen fungerar väl. En stor svårighet har varit att sålla bort stillastående mål från rörliga, främst i låga farter. Detta eftersom sensorernas hastighetsangivelse har låg precision vilket medför att ett stillastående mål kan rapporteras som ett långsamt rörligt. / In this thesis report an implementation of fusion between short range radars is described. The purpose of this implementation is to obtain Stop & Go functionality for the adaptive cruise control which is offered as an option in today’s Scania trucks. Adaptive cruise control, ACC, is a feature that automatically adapts the vehicle speed if it should catch up to another vehicle moving slower than the desired set speed. For this application Scania today use a long range sensor that has a long but narrow field of view. By complementing this sensor with short range sensors, which have short but wide fields of view, the desired field of view in the short range area can be obtained. This is necessary in order to be able to safely implement the Stop & Go functionality. Sensor fusion is based on the principle that two or more sensors overlooking the same area give a more accurate impression of reality than a single one. The fusion can be conducted in several ways. In the report three different methods are briefly described; Bayesian Networks, the Auction Algorithm and Gating. In the implementation the gating method is applied. Initially a target tracking algorithm using Kalman filter is implemented. However, after software updates in the short range sensors this algorithm is no longer used. This is because the improved tracking made internally by the sensors is considered to be sufficient, hence making an external tracking algorithm redundant. The sensor fusion and the target selection are implemented in a Simulink model which is later programmed into a hardware unit. The purpose of the latter is to be able to evaluate the functionality in a prototype vehicle. Initially, only associated targets are reported from the model. In order to obtain a more continuous target tracking, mainly while driving in curves, observations made only by single sensors are also considered. However, these measurements have lower level of confidence than the associated targets. Therefore these measurements first have to be validated for a certain period of time before they are approved. Test runs indicate that the target tracking works as intended. One major difficulty has been to separate stationary targets from slow moving ones, especially in low speeds. This is due to the fact that the sensors’ speed measurements are fairly inaccurate. Therefore a stationary target could be reported as a slow moving one.
|
2 |
Kortdistansradar för ACC-system / Short Range Radar for ACC-systemsBredberg, Linus January 2008 (has links)
<p>I denna rapport redogörs för en implementering av fusion mellan kortdistanssensorer. Syftet med denna implementering är att erhålla Stop & Go-funktionalitet till den adaptiva farthållaren som idag finns som tillval i Scanias lastbilar. Adaptiv farthållning, ACC, är en funktion som automatiskt anpassar fordonets hastighet ifall detta kommer ikapp ett annat fordon som färdas långsammare än den inställda hastigheten. Scanias system använder sig idag av en långdistanssensor som ser långt men har smalt synfält. Genom att komplettera denna med kortdistanssensorer, som ser kort men brett, kan önskvärt synfält i närområdet för att säkert kunna implementera Stop & Go-funktionen uppnås. Sensorfusion bygger på principen att två eller fler sensorer som ser samma sak ger en mer korrekt bild av verkligheten än en enskild. Fusionen kan genomföras på många olika sätt. I rapporten beskrivs tre metoder övergripligt; Bayesiska nätverk, auktionsalgoritmen samt Gating. I implementeringen används gatingmetoden.</p><p>Initialt implementeras en målspårningsalgoritm med kalmanfilter. Efter uppdatering av sensormjukvaran väljs dock denna bort eftersom sensorernas interna målspårning då anses som tillräcklig. En modell med sensorfusionen och målselekteringen byggs i Simulink och programmeras sedan in i en hårdvaruenhet. Syftet med detta är att kunna utvärdera funktionen i ett prototypfordon. Inledningsvis rapporteras enbart korrelerade mål från modellen. För mer kontinuerlig målföljning, främst i kurvor, implementeras därefter en algoritm som även tar hänsyn till enskilda sensorers observationer. Dessa accpeteras dock först efter en viss valideringstid eftersom denna information har lägre konfidens än korrelerade mål.</p><p>Provkörningar visar att målföljningen fungerar väl. En stor svårighet har varit att sålla bort stillastående mål från rörliga, främst i låga farter. Detta eftersom sensorernas hastighetsangivelse har låg precision vilket medför att ett stillastående mål kan rapporteras som ett långsamt rörligt.</p> / <p>In this thesis report an implementation of fusion between short range radars is described. The purpose of this implementation is to obtain Stop & Go functionality for the adaptive cruise control which is offered as an option in today’s Scania trucks. Adaptive cruise control, ACC, is a feature that automatically adapts the vehicle speed if it should catch up to another vehicle moving slower than the desired set speed. For this application Scania today use a long range sensor that has a long but narrow field of view. By complementing this sensor with short range sensors, which have short but wide fields of view, the desired field of view in the short range area can be obtained. This is necessary in order to be able to safely implement the Stop & Go functionality. Sensor fusion is based on the principle that two or more sensors overlooking the same area give a more accurate impression of reality than a single one. The fusion can be conducted in several ways. In the report three different methods are briefly described; Bayesian Networks, the Auction Algorithm and Gating. In the implementation the gating method is applied.</p><p>Initially a target tracking algorithm using Kalman filter is implemented. However, after software updates in the short range sensors this algorithm is no longer used. This is because the improved tracking made internally by the sensors is considered to be sufficient, hence making an external tracking algorithm redundant. The sensor fusion and the target selection are implemented in a Simulink model which is later programmed into a hardware unit. The purpose of the latter is to be able to evaluate the functionality in a prototype vehicle. Initially, only associated targets are reported from the model. In order to obtain a more continuous target tracking, mainly while driving in curves, observations made only by single sensors are also considered. However, these measurements have lower level of confidence than the associated targets. Therefore these measurements first have to be validated for a certain period of time before they are approved.</p><p>Test runs indicate that the target tracking works as intended. One major difficulty has been to separate stationary targets from slow moving ones, especially in low speeds. This is due to the fact that the sensors’ speed measurements are fairly inaccurate. Therefore a stationary target could be reported as a slow moving one.</p>
|
3 |
Určení přetvoření železničního svršku / Deformation Surveying of Railway TrackŠtrba, Peter January 2014 (has links)
The aim of this diploma thesis is to specify the displacement and deformations of the railway tracks axis on bridge structures in cities of Zábřeh na Moravě and Břeclav. The bridge structures covered have great dilatation distances, therefore it is necessary to monitor the movements of the railway tracks depending on climatic conditions. GPS methods have been used throughout the whole measurement and data processing. The result includes also a comparison of GPS and conventional methods. The result of the thesis is a detection of proven displacements. One of the goals of the thesis is the comparison of the displacements and the accuracy using the method chosen by author of the thesis and using classical geodetic methods.
|
4 |
Sub-optimal Energy Management Architecture for Intelligent Hybrid Electric Bus : Deterministic vs. Stochastic DP strategy in Urban Conditions / Architecture de gestion de l'énergie sous-optimale pour les bus électriques hybrides intelligents : stratégie basée DP déterministe versus stratégie basée DP stochastique en milieu urbainAbdrakhmanov, Rustem 27 June 2019 (has links)
Cette thèse propose des stratégies de gestion de l'énergie conçues pour un bus urbain électrique hybride. Le système de commande hybride devrait créer une stratégie efficace de coordination du flux d’énergie entre le moteur thermique, la batterie, les moteurs électriques et hydrauliques. Tout d'abord, une approche basée sur la programmation dynamique déterministe (DDP) a été proposée : algorithme d'optimisation simultanée de la vitesse et de la puissance pour un trajet donné (limité par la distance parcourue et le temps de parcours). Cet algorithme s’avère être gourmand en temps de calcul, il n’a pas été donc possible de l’utiliser en temps réel. Pour remédier à cet inconvénient, une base de données de profils optimaux basée sur DP (OPD-DP) a été construite pour une application en temps réel. Ensuite, une technique de programmation dynamique stochastique (SDP) a été utilisée pour générer simultanément et d’une manière optimale un profil approprié de la vitesse du Bus ainsi que sa stratégie de partage de puissance correspondante. Cette approche prend en compte à la fois la nature stochastique du comportement de conduite et les conditions de circulations urbaines (soumises à de multiples aléas). Le problème d’optimisation énergétique formulé, en tant que problème intrinsèquement multi-objectif, a été transformé en plusieurs problèmes à objectif unique avec contraintes utilisant une méthode ε-constraint afin de déterminer un ensemble de solutions optimales (le front de Pareto).En milieu urbain, en raison des conditions de circulation, des feux de circulation, un bus rencontre fréquemment des situations Stop&Go. Cela se traduit par une consommation d'énergie accrue lors notamment des démarrages. En ce sens, une stratégie de régulation de vitesse adaptative adaptée avec Stop&Go (eACCwSG) apporte un avantage indéniable. L'algorithme lisse le profil de vitesse pendant les phases d'accélération et de freinage du Bus. Une autre caractéristique importante de cet algorithme est l’aspect sécurité, étant donné que l’ACCwSG permet de maintenir une distance de sécurité afin d’éviter les collisions et d’appliquer un freinage en douceur. Comme il a été mentionné précédemment, un freinage en douceur assure le confort des passagers. / This PhD thesis proposes Energy Management Strategies conceived for a hybrid electrical urban bus. The hybrid control system should create an efficient strategy of coordinating the flow of energy between the heat engine, battery, electrical and hydraulic motors. Firstly, a Deterministic Dynamic Programming (DDP) based approach has been proposed: simultaneous speed and powersplit optimization algorithm for a given trip (constrained by the traveled distance and time limit). This algorithm turned out to be highly time consuming so it cannot be used in real-time. To overcome this drawback, an Optimal Profiles Database based on DP (OPD-DP) has been constructed for real-time application. Afterwards, a Stochastic Dynamic Programming (SDP) technique is used to simultaneously generate an optimal speed profile and related powersplit strategy. This approach takes into account a stochastic nature of the driving behavior and urban conditions. The formulated energy optimization problem, being intrinsically multi-objective problem, has been transformed into several single-objective ones with constraints using an ε-constraint method to determine a set of optimal solutions (the Pareto Front).In urban environment, due to traffic conditions, traffic lights, a bus encounters frequent Stop&Go situations. This results in increased energy consumption during the starts. In this sense, a relevant Eco Adaptive Cruise Control with Stop&Go (eACCwSG) strategy brings the undeniable benefit. The algorithm smooths speed profile during acceleration and braking phases. One more important feature of this algorithm is the safety aspect, as eACCwSG permits to maintain a safety distance in order to avoid collision and apply a smooth braking. As it was mentioned before, smooth braking ensures passengers comfort.
|
5 |
Validierung einer spezialisierten Studiendatenanalyse für Mobilitätsindikatoren durch Desktop-GISTümmler, Bartholomeus 03 May 2023 (has links)
In dieser Arbeit wurde eine Studiendatenanalyse der TU Berlin zur Analyse von menschlichen Bewegungsdaten der Studie Mobil im Havelland der Charité Berlin anhand von Mobilitätsindikatoren auf Grundlage von zwei Testdatensätzen mithilfe der Desktop-GIS ArcGIS Pro und QGIS validiert. Des Weiteren wurde in dieser Arbeit anhand der Auswertungsergebnisse der Desktop-GIS ArcGIS Pro und QGIS diskutiert, inwieweit sich Analysen von Bewegungsdaten anhand von Mobilitätsindikatoren auch unter einem preissensiblen Anspruch mit einem Open-Source-System wie QGIS off the shelf durchführen lassen.
Die Validierung hat ergeben, dass die Studiendatenanalyse der TU Berlin im Vergleich mit den Desktop-GIS gleichwertige und zum Teil sogar höherwertigere Ergebnisse generieren konnte. Vor allem der auf neuartige Verfahren aufbauende Stop & Go Classifier der Studiendatenanalyse der TU Berlin konnte mit seiner Performance bei der Detektion von Verweilorten überzeugen. Somit kann der Studiendatenanalyse der TU Berlin ohne Einschränkungen eine Eignung für die Auswertung der Bewegungsdaten der Studie Mobil im Havelland bescheinigt werden. In Bezug auf den Vergleich der Desktop-GIS kann festgehalten werden, dass solche Analysen mit QGIS möglich sind. Eine Umsetzung mit off the shelf Verfahren ist aber vor allem in Bezug auf den zentralen Aspekt der Detektion von Verweilorten bis dato mit QGIS nicht gewährleistet. Hier muss auf externe Python-Bibliotheken wie MovingPandas oder Scikit-mobility zurückgegriffen werden. / In this paper, a study data analysis of the TU Berlin for the analysis of human movement data of the study Mobil im Havelland based on mobility indicators is validated on the basis of two test data sets using the desktop GIS ArcGIS Pro and QGIS. Furthermore, this paper uses the evaluation results of the desktop GIS ArcGIS Pro and QGIS to discuss the extent to which analyses of movement data using mobility indicators can also be carried out off the shelf with an OSS such as QGIS under a price-sensitive claim.
The validation showed that the TU Berlin's study data analysis was able to generate equivalent and in some cases even higher quality results compared to desktop GIS. The performance of the TU Berlin's Stop & Go Classifier, which is based on innovative procedures, was particularly convincing. Thus, the study data analysis of the TU Berlin can be certified without restrictions as suitable for the evaluation of the movement data of the study Mobile in Havelland. With regard to the comparison of desktop GIS, it can be stated that such analyses are possible with QGIS. However, an implementation with off-the-shelf methods is not yet guaranteed with QGIS, especially with regard to the central aspect of the detection of dwelling places. However, external Python libraries such as MovingPandas or scikit-mobility can be used here.
|
Page generated in 0.0714 seconds