• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Modellering av dagvattennät utgående från markhöjder / Modeling of storm water network based on ground level

Ahlin, Erik January 2012 (has links)
Enligt Svenskt Vatten ska dagvattensystem vara dimensionerade för att klara ett regnmed en återkomsttid på 10 år. För att utvärdera om ett system är rätt dimensionerat kanen dagvattenmodell upprättas. Det är då viktigt att veta vilka nivåer ledningarna har mendenna information är bristfällig hos många kommuner. Ledningarna borde dock följatopografin i generella drag och borde därför kunna uppskattas därifrån.Syftet med denna studie var därför att utveckla en metod för hur vattenledningarnasnivåer kunde ansättas på ett enkelt sätt utifrån marknivån och hur stor betydelse detskulle ha vid dagvattenmodellering. Ett ytterligare syfte var att även bedöma Lidingöstads dagvattensystem, där information om ledningarnas nivåer saknades, utifrån dennametod. För att metoden skulle vara användbar var det också viktigt att den var enkel attapplicera även för stora dagvattensystem.Delar av Sundbybergs dagvattennät i Stockholms län användes för att utvecklametoden. Där var ledningarnas nivåer kända och en analys av detta resulterade i enmetod där brunnarnas djup, som styr ledningarnas nivåer, ansattes på 2 m djup. Ettundantag var tvunget att göras vid de fall då ledningarna fick bakfall. Där ansattes ettdjup så att ledningen låg horisontellt.Vid utvärdering av hur stor påverkan ansättningen av djupet hade togs hänsyn tillosäkerheten av avrinningskoefficienten genom att använda tre olika scenarier;oförändrad, 30 % lägre samt 30 % högre avrinningskoefficient. För varje brunn vägdesrisken för översvämning ihop från resultatet av dessa tre scenarier och sammanställdesmed att varje brunns trycknivå fick status över mark, under mark eller osäker. Dettagjordes för både modell med kända och med ansatta nivåer. Statusen för varje brunnjämfördes sedan dem emellan för att utvärdera hur bra metoden för att ansättabrunnarnas djup var.Resultatet av studien visar att metoden i stora drag gav samma resultat vad gäller riskenför översvämning jämfört med om nivåerna hade varit kända. Avvikelser uppstodfrämst vid diken men även för enstaka instängda områden och utlopp. För Lidingösdagvattennät hamnade trycknivån för 18 % av brunnarna över marknivån vid ett 10-årsregn och ytterligare 16 % var osäkra. / According to The Swedish Water and Wastewater Association (SWWA), a storm waternetwork must be able to handle a rainfall with a return period of 10 years. In order toevaluate whether a drain system is adequately dimensioned, a storm water model can beestablished. This requires knowledge about the levels at which the conduits are situated,and this information is insufficient in many areas. However, the pipes could largely beassumed to follow the topography and the pipes levels can be estimated from it.Therefore, the aim of this study was to develop a method for how the level of stormwater conduits could be assessed from the ground level, and the significance thismethod had for storm water modeling. A further aim was also to, according to thismethod; assess the storm water systems of the Lidingö community, which lackedinformation on the pipe levels. Furthermore, for the method to be useful it wasimportant to make it easily applicable even to large storm water networks.The method was developed using parts of the storm water network in Sundbyberg,Stockholm. The levels of the conduits were known beforehand, and an analysis of themresulted in a method where the depth of the manhole, which controls the levels of theconduits, was estimated to 2 m. An exception had to be made when the conduits were inreverse slope, in which cases horizontal slope was assumed.When evaluating the impact from the depth assessment on the runoff, the uncertaintyfrom the imperviousness was taken into account by using three different scenarios;unchanged, 30% lower and 30% higher imperviousness. The risk of flooding for eachone of the manholes was weighted from the results of these three scenarios. Thisresulted in a pressure level for each manhole, either above ground, below ground orinconclusive. This was done for the model with both known levels for the conduits, andwith the assessed levels. In order to evaluate how well the method for applying thedepth worked, the status of each manhole was compared between the two models.The conclusion from this study was that the method developed here, more or less gavethe same results as when the levels of the conduits were previously known.Discrepancies arose mainly in ditches, but also for a few landlocked areas and outlets.For the Lidingö storm water network, 18 % of the wells ended up with a pressure levelabove ground when applied to a rain with a 10 year return period. Another 16 % of thewells were inconclusive.
2

Bestämning av vattendelare i urban miljö : Metod för avgränsning av avrinningsområden i ArcGIS utgående från dagvattensystemet / Watershed delineation in urban catchment areas : Method for delineating catchment areas in ArcMap based on storm-water drains

Calestam, Karl-Martin January 2013 (has links)
Växande städer leder till att naturmark omvandlas till stadsmiljöer. Det skapar mer hårdgjorda ytor och därmed ökade volymer dagvatten som behöver hanteras. Modellering av dagvattennätet används ofta för att bedöma kapaciteten och risk för översvämningar. Avrinningsområdets storlek är en avgörande parameter för att bedöma hur mycket vatten som kommer till en viss ledning. Traditionellt har automatisk bestämning av avrinningsområden gjorts enbart utifrån topografin. I områden med dagvattennät styr däremot ledningarnas sträckning i första hand hur vattnet rinner, och de följer inte nödvändigtvis terrängen. ArcHydro Tools, som är ett tilläggsprogram till ArcMap, har utvecklats för att beräkna topografiska avrinningsområden. Genom att programmera en tilläggsfunktion i Python har processen i ArcHydro Tools anpassats för att kunna ta hänsyn till dagvattennätet. Dagvattennätet approximerades som vattendrag. Tryckledningar och tunnlar tillåter inte något inflöde av vatten. Därför beskrevs dessa som ändpunkter i ledningsnätet, varifrån vattnet inte rann vidare. Funktionen som skapades i det här examensarbetet tillät att vattnet stannade i dessa punkter, till skillnad från i den ursprungliga metoden. Den utgick istället från att vattnet rann till kanten av det undersökta området, vilket i de här fallen skulle ha resulterat i felaktigt avgränsade avrinningsområden. Tilläggsfunktionen anpassades för att användas som övriga funktioner i ArcMap och testades på data över Lidingö stad. Resultatet visade att det var möjligt att utnyttja topografiskt baserade metoder för bestämning av avrinningsområden så att avgränsningen istället skedde med utgångspunkt i dagvattennätet. Det är ett steg mot att effektivisera processen för bestämning av avrinningsområden för användning vid hydrologisk modellering av dagvattennätet. Behovet av manuell bearbetning minskas. Ett försök att i ArcMap implementera en funktion för efterbehandling av avrinningsområden gjordes också. Funktionen letar upp avrinningsområden som bedöms som för små och lägger ihop dem med ett närliggande område. Avrinningsområden som beräknats med den modifierade metoden har senare använts vid modellering av dagvattennätet i Molkom, Värmland. / Growing populations result in expanding cities. An increase in the amount of impervious surfaces in the area will follow and thereby generate more storm water. The capacity of the drainage system can be evaluated using hydraulic modelling. The model highly depends on the catchment areas, which will determine the water volume each pipe section receive. Watershed delineation is usually done based on the topography. However, if a storm water drainage system is present, it may route the water in a different direction than the slope indicates. ArcHydro Tools is an extension to ArcMap and is commonly used to delineate catchment areas. The method heavily relies on topography during this process. A function has been developed during the course of this project to allow for the drainage system to be the primary source of information for watershed delineation. This function made sure that outlets in the model were to be evaluated as such, even if they happen to be located in the middle of the area of interest. The water is therefore not necessarily routed to the edge of the elevation model, but can be allowed to stay at the appropriate position. In order to do this, the drainage system was represented as a stream network. The new method was applied to test data supplied by Lidingö city, Stockholm, Sweden, and included elevation data and information about the drainage system. The result implies that it is indeed possible to use the drainage system as a base for delineation of catchment areas. A more efficient method of calculating catchment areas will reduce the required amount of manual processing, thereby saving time and resources. Another function, for finishing up the resulting catchment areas, is proposed but not fully implemented. The whole process was used to delineate catchment areas for Molkom, County of Värmland, Sweden. The resulting watersheds were later successfully used for modelling the storm water drains in the area.

Page generated in 0.0563 seconds