• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 23
  • 8
  • 4
  • 3
  • 2
  • 2
  • Tagged with
  • 50
  • 50
  • 10
  • 10
  • 9
  • 9
  • 8
  • 8
  • 7
  • 7
  • 7
  • 7
  • 7
  • 7
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

DEVELOPMENT OF NOVEL COMPOSITE AND MULTILAYERED MATERIALS FOR PDMS-BASED, MINIMALLY-INVASIVE FLEXIBLE IMPLANTABLE MICROSYSTEMS

Chong, Hao 25 January 2022 (has links)
No description available.
22

Properties and sensing applications of long-period gratings

Bhatia, Vikram 08 November 2006 (has links)
A long-period grating is obtained by introducing a periodic refractive index modulation in the core of a hydrogen-sensitized germanosilicate fiber. The phase-matching condition causes light from the fundamental guided mode to couple to discrete, forward-propagating cladding modes. These cladding modes attenuate rapidly on propagation and result in loss bands at distinct wavelengths in the grating transmission spectrum. We present a comprehensive analysis of the spectral modulation provided by long-period gratings. An analytical model is developed to predict the location of the resonance bands as functions of the grating period and the parameters of the host fiber. These gratings with small insertion loss and negligible back-ret1ection are shown to possess two different regions of operation, namely, normal and anomalous. The fabrication and high temperature annealing of these devices is detailed, and a novel method to obtain these gratings without employing ultra-violet radiation is presented. Long-period gratings are proposed as simple yet versatile optical fiber sensors. It is demonstrated that external temperature and axial strain introduce large spectral shifts in the resonance bands. A theoretical evaluation of the sensitivity reveals a strong dependence on the properties of the optical fiber, the grating periodicity, the order of the cladding mode, the writing and annealing conditions, and the index of refraction of the surrounding medium. Temperature-insensitive and strain-insensitive long-period gratings written in standard optical fibers are studied for their sensing characteristics. Long period grating-based refractive index sensors are obtained without etching the cladding of the fiber. It is demonstrated that long-period grating sensors can be implemented with simple demodulation schemes. Applications of these devices to structural health monitoring and biochemical sensing are presented. Finally, long-period gratings are demonstrated as effective sensors that can be used to separate temperature and axial strain acting simultaneously on the fiber. Strain-insensitive gratings are used to extend the dynamic range of the system in the presence of non-linearities and cross-sensitivities. / Ph. D.
23

Methods and Applications of Controlling Biomimetic Robotic Hands

Paluszek, Matthew Alan 06 February 2014 (has links)
Vast improvements in robotics and wireless communication have made teleoperated robots significantly more prevalent in industry, defense, and research. To help bridge the gap for these robots in the workplace, there has been a tremendous increase in research toward the development of biomimetic robotic hands that can simulate human operators. However, current methods of control are limited in scope and do not adequately represent human muscle memory and skills. The vision of this thesis is to provide a pathway for overcoming these limitations and open an opportunity for development and implementation of a cost effective methodology towards controlling a robotic hand. The first chapter describes the experiments conducted using Flexpoint bend sensors in conjunction with a simple voltage divider to generate a cost-effective data glove that is significantly less expensive than the commercially available alternatives. The data glove was able to provide sensitivity of less than 0.1 degrees. The second chapter describes the molding process for embedding pressure sensors in silicone skin and data acquisition from them to control the robotic hand. The third chapter describes a method for parsing and observing the information from the data glove and translating the relevant control variables to the robotic hand. The fourth chapter focuses on the feasibility of the brain computer interfaces (BCI) and successfully demonstrates the implementation of a simple brain computer interface in controlling a robotic hand. / Master of Science
24

Design, manufacturing and testing of smart beams with EFPI strain sensor for damage detection

Sim, Lay M. January 2003 (has links)
This thesis aimed at the development of a fibre optic strain sensor-based damage detection and evaluation system (FODDAS) based on the composite beams. EFPI strain sensors were used with their integrity being assessed. Their performance, either bonded on the surfaces or embedded was examined extensively. They were shown to be adequate and reliable for strain measurements. Through-the-width damages were simulated by artificially-embedded delaminations, which were located at several through-the-thickness locations, each with two different sizes. The overall design considerations were guided by ply stresses and strains which were estimated by using the modified classical lamination theory (CLT). Considerable efforts were devoted to assessing the through-the-thickness mechanical behaviours of the beams containing optical fibres in three-point bending and short beam shear (SBS). They involved various optical fibre orientations with respect to 00 plies / longitudinal axis and at various through-the-thickness locations, each with different number of optical fibres. The understanding of these behaviours paved the way for the evaluation of the beam-based FODDAS. Smart preconditioned beams were subjected to the quasi -static loads whose magnitudes and locations were required to be well controlled. The viability and effectiveness of the beam-based FODDAS was evaluated in terms of strength and strain obtained by the embedded sensor as well as the surface-bonded strain gauges via the cross comparison of ten cases. For the strength, each beam was incrementally loaded up to the ultimate failure either in three-point bending or SBS. After each increment, the beam was unloaded and inspected for damage. For the given locations of EFPI-SS and artificial delamination as well as the sizes of the latter, it was found that the embedded EFPI-SSs were capable of picking up the stiffness degradation when the 10- mm as well as the 20-mm delamination was located at the 29-30 ply interface in the tensile region of a 32-ply quasi-isotropic carbon/epoxy smart composite beam. It was speculated from single tests results that the propagation of the embedded delamination of the sufficient size was able not only to be detected but also to be monitored by the sensors.
25

Zustandsüberwachung einer integralen, mehrfeldrigen Eisenbahn-Stahlverbundbrücke mit verteilten faseroptischen Sensoren

Kromminga, Sven, Zdanowicz, Katarzyna, Käding, Max, Howiacki, Tomasz 08 November 2023 (has links)
Im Zuge der Umverlegung einer Güterzugstrecke wurde der Ems-Jade-Kanal durch einen dreifeldrigen, integralen Stahlverbundrahmen überführt, an dem durch ein installiertes Dauermonitoring die Entwicklung der Zwangsschnittgrößen und der einsetzenden Rissbildung beurteilt werden soll. Zur Dehnungsmessung am Bauwerk wurden sowohl Dehnungsmessstreifen (DMS) als auch faseroptische Sensoren (DFOS, distributed fibre optic sensors) im bzw. am Bauwerk appliziert. Die aus dieser Kombination der unterschiedlichen Dehnungssensorik gewonnenen Zustandsgrößen werden in der folgenden Abhandlung verglichen und bewertet.
26

Development and investigation of weft knitted strain sensor

Atalay, Ozgur January 2015 (has links)
This thesis presents a study of the sensing properties exhibited by textile-based knitted strain sensors. Sensing fabrics were manufactured from silver-plated conductive nylon and non-conducting elastomeric yarns. The component yarns offered similar diameters, bending characteristics and surface friction, but their production parameters differed in respect of the yarn input tension, the number of conductive courses in the sensing structure and the elastomeric yarn extension characteristics. The knitted sensors were manufactured using flat-bed knitting technology, and electro-mechanical tests were performed on the specimens using a tensile testing machine to apply strain whilst the sensor was incorporated into a Wheatstone bridge arrangement to allow electrical monitoring. The novel operational principle relies on the separation under strain of adjacent conducting knitted loops which are normally held in contact by the elastomeric yarn. The results confirm that production parameters play a fundamental role in determining the physical behaviour and the sensing properties of knitted sensors and the response could be engineered by varying the production parameters of specific designs. Results showed that the knitted structures could be manipulated to produce gauge factor values between 2.26 and 0.23 for sensors with working ranges of 8.4 % and 3.3 % respectively when the elastomeric yarn had 8 cN input tension. The generated signals were stable and repeatable, and under cyclic testing proved to be substantially free from long-term drift. A textile-based strain sensor was developed to create a respiration belt; this was realised by bringing together the extensible knitted sensor and a relatively inelastic textile strap. Machine simulations and real time measurements on a human subject were performed to calculate average breathing frequencies under different static and dynamic conditions. Various respiration rates were monitored to simulate different medical conditions and with the belt located either round the torso or in the abdominal area, the sensor yielded a satisfactory response. However, body motion artefacts affected the signal quality under dynamic conditions and an additional signal-processing step was added to separate unwanted interference from the breathing signal. Electro-mechanical modelling was developed by exploiting Peirce`s loop model in order to describe the fabric geometry under static and dynamic conditions. Kirchhoff`s node and loop equations were employed to create a generalised solution for the equivalent electrical resistance of the textile sensor for a given knitted loop geometry and for a specified number of loops. Experimental results were obtained from the sensor for strain levels up to 40% and these correlate well with the modelled data; a maximum error of 2.13 % was found between the experimental and modelled resistance-strain relationships.
27

Piezoelectric thin films and nanowires: synthesis and characterization

Xiang, Shu 20 June 2011 (has links)
Piezoelectric materials are widely used for sensors, actuators and trasducers. Traditionally, piezoelectric applications are dominated by multicomponent oxide ferroelectrics such as lead zirconate titanate (PZT), which have the advantage of high piezoelectric coefficients. Recently, one-dimensional piezoelectric nanostructures such as nanowires of zinc oxide (ZnO) and gallium nitride (GaN) has gained a lot of attention due to their combined piezoelectric and semiconducting properties. The focus of this thesis is to study the processing and electric properties of such piezoelectric thin films and nanostructures for various applications. There is an increasing interest to form thin films of multicomponent ferroelectric oxides such as PZT on three-dimensional structures for charge storage and MEMS applications. Traditional vapor phase deposition techniques of PZT offer poor conformality over threedimensional surfaces due to their reactant transport mechanisms. As an alternative, solgel synthesis may provide new process possibilities to overcome this hurdle but the film quality is usually inferior, and the yield data was usually reported for small device areas. The first part of this study is dedicated to the characterization of the electric properties and yield of PZT thin film derived from the sol-gel process. PZT thin films with good electric property and high yield over a large area have been fabricated. La doping was found to double the breakdown field due to donor doping effect. LaNiO3 thin films that can be coated on a three-dimensional surface have been synthesized by an all-nitrate based sol-gel route, and the feasibility to form a conformal coating over a three-dimensional surface by solution coating techniques has been demonstrated. ZnO and GaN micro/nanowires are promising piezoelectric materials for energy harvesting and piezotronic device applications. The second part of this study is focused on the growth of ZnO and GaN micro/nanowires by physical vapor deposition techniques. The morphology and chemical compositions are revealed by electron microscopy. Utilizing the as-grown ZnO nanowires, single nanowire based photocell has been fabricated, and its performance was studied in terms of its response time, repeatability, excitation position and polarization dependence upon He-Cd UV-laser illumination. The excitation position dependence was attributed to the competition of two opposite photo- and thermoelectric currents originated from the two junctions. The excitation polarization dependence was attributed to the difference in optical properties due to crystallographic anisotropy. Employing the as-grown GaN nanowires, single nanowire based strain sensor is demonstrated, and its behavior is discussed in terms of the effect of strain-induced piezopotential on the Schottky barrier height.
28

Pressure Sensor Development Using Hard Anodized Aluminum Diaphragm And Thin Film Strain Gauges

Rajendra, A 04 1900 (has links)
The sensor is a device that converts a form of energy concerning which the information is sought, called the measurand, to a form (electrical) in which it can be usefully processed or interpreted. Sensors rely on physical or chemical phenomena and materials where those phenomena appear to be useful. Those phenomena may concern the material itself or its geometry. Hence, the major innovations in sensors come from new materials, new fabrication techniques or both. Normally, thin film sensors are realized by depositing a sensing film on a suitable substrate. There could be many combination of metals and insulating materials being deposited depending upon the application or sensing requirements. In general, sensors for various applications are fabricated using a variety of liquid phase technologies (also called as wet methods) and gas phase technologies (also called as dry methods) of deposition. Hence sensor fabrication technology requires various combination of processing technologies and newer materials. In the present work, an attempt is made to design and fabricate a thin film based pressure sensor using a combination of wet and dry deposition techniques. The diaphragm, used for sensing the pressure is coated with a hard anodic coating (Al2O3) using a wet technology, viz. pulse hard anodizing technique, for electrical insulation requirement. The piezo-resistive strain sensing films were deposited onto this coating by dry method, namely, DC Magnetron sputtering technique.. Chapter 01 gives a brief overview of sensors, their classification, principles of sensing,characteristics, materials used in the fabrication of sensors like conductors and insulators, the components of a sensor. Chapter 02 gives brief information about various techniques of depositions viz., liquid phase technologies (wet methods) and vapour phase technologies (dry methods) used to fabricate the sensors. Also, information regarding the coating property evaluation and coating characterization techniques is included. The chapter 03 presents a detailed account of work carried out to obtain an electrically insulating layer by the development of pulse hard anodizing process for aluminum alloy diaphragm, necessary process optimization and testing. The details related to the development, fabrication and testing of thin film based pressure sensors using aluminum alloy diaphragm with hard anodic coating are presented in Chapter 04. The thin film strain gauges were deposited using DC magnetron sputtering technique. The information about mask design, deposition process parameters, calibration etc is also included. Chapter 05 provides summary of the work carried out and conclusions. The scope of carrying out further work is also outlined.
29

Podélné indexové struktury v optických vláknech / Longitudinal index structures in optical fibers

Polreich, Štěpán January 2018 (has links)
This thesis describes basic concepts, principles and properties of optical fibers. Considerable part is devoted to fiber gratings that are created by a change in the refractive index in the optical fiber core. In this work is described description, principle, method od production and distribution of gratings on Bragg gratings, gratings with long period and chirped gratings. In this thesis are also presented different types of lasers and their advantages over other lasers. A large part deals with the description of the femtosecond laser, with which the structures will be later made into the material. In addition, the laser modes are differentiated, this is a mode of micro-machining and modification or a change in refractive index of the material. The last part deals with change the refractive index in planar technology, the creation of a groove for fastening the fiber and attempts to write the gratings into the optical fiber. Created fiber sensor are tested for temperature and tensile changes. Finally, the practical use of sensors made by femtosecond laser and the advantages over UV laser and phase mask techniques are presented.
30

Highly Stretchable Miniature Strain Sensor for Large Dynamic Strain Measurement

Yao, Shulong 05 1900 (has links)
This thesis aims to develop a new type of highly stretchable strain sensor to measure large deformation of a specimen subjected to dynamic loading. The sensor was based on the piezo-resistive response of carbon nanotube(CNT)/polydimethysiloxane (PDMS) composites thin films, some nickel particles were added into the sensor composite to improve the sensor performance. The piezo-resistive response of CNT composite gives high frequency response in strain measurement, while the ultra-soft PDMS matrix provides high flexibility and ductility for large strain measuring large strain (up to 26%) with an excellent linearity and a fast frequency response under quasi-static test, the delay time for high strain rate test is just 30 μs. This stretchable strain sensor is also able to exhibit much higher sensitivities, with a gauge factor of as high as 80, than conventional foil strain gauges.

Page generated in 0.0403 seconds