Spelling suggestions: "subject:"ctrain energy density function"" "subject:"detrain energy density function""
1 |
Mechanical optimization of vascular bypass graftsFelden, Luc 14 April 2005 (has links)
Synthetic vascular grafts are useful to bypass diseased arteries. The long-term failure of synthetic grafts is primarily due to intimal hyperplasia at the anastomotic sites. The accelerated intimal hyperplasia may stem from a compliance mismatch between the host artery and the graft since commercially available synthetic conduits are much stiffer than an artery. The objective of this thesis is to design a method for fabricating a vascular graft that mechanically matches the patients native artery over the expected physiologic range of pressures. The creation of an optimized mechanical graft will hopefully lead to an improvement in patency rates.
The mechanical equivalency between the graft and the host artery is defined locally by several criteria including the diameter upon inflation, the elasticity at mean pressure, and axial force. A single parameter mathematical for a thin-walled tube is used to describe of the final mechanical behavior of a synthetic graft. For the general problem, the objective would be to fabricate a mechanics-matching vascular graft for each host artery. Typically, fabrication parameters are set initially and the properties of the fabricated graft are measured. However, by modeling the entire fabrication process and final mechanical properties, it is possible to invert the situation and let the typical output mechanical values be used to define the fabrication parameters. The resultant fabricated graft will then be mechanically matching. As a proof-of-concept, several prototype synthetic grafts were manufactured and characterized by a single Invariant to match a canine artery. The resultant graft equaled the diameter upon inflation, the elasticity at mean pressure, and axial force of the native canine artery within 6%.
An alternative to making an individual graft for each artery is also presented. A surgeon may choose the best graft from a set of pre-manufactured grafts, using a computer program algorithm for best fit using two parameters in a neighborhood. The design optimization problem was solved for both canine carotid and human coronary arteries.
In conclusion, the overall process of design, fabrication and selection of a mechanics matching synthetic vascular graft is shown to be reliable and robust.
|
2 |
Analysis of Hyperelastic Materials with Mechanica - Theory and Application ExamplesJakel, Roland 03 June 2010 (has links) (PDF)
Part 1: Theoretic background information
- Review of Hooke’s law for linear elastic materials
- The strain energy density of linear elastic materials
- Hyperelastic material
- Material laws for hyperelastic materials
- About selecting the material model and performing tests
- Implementation of hyperelastic material laws in Mechanica
- Defining hyperelastic material parameters in Mechanica
- Test set-ups and specimen shapes of the supported material tests
- The uniaxial compression test
- Stress and strain definitions in the Mechanica LDA analysis
Part 2: Application examples
- A test specimen subjected to uniaxial loading
- A volumetric compression test
- A planar test
- Influence of the material law
Appendix
- PTC Simulation Services Introduction
- Dictionary Technical English-German / Teil 1: Theoretische Hintergrundinformation
- Das Hookesche Gesetz für linear-elastische Werkstoffe
- Die Dehnungsenergiedichte für linear-elastische Materialien
- Hyperelastisches Material
- Materialgesetze für Hyperelastizität
- Auswählen des Materialgesetzes und Testdurchführung
- Implementierung der hyperelastischen Materialgesetze in Mechanica
- Definieren der hyperelastischen Materialparameter in Mechanica
- Testaufbauten und Prüfkörper der unterstützten Materialtests
- Der einachsige Druckversuch
- Spannungs- und Dehnungsdefinition in der Mechanica-Analyse mit großen
Verformungen
Teil 2: Anwendungsbeispiele
- Ein einachsig beanspruchter Prüfkörper
- Ein volumetrischer Drucktest
- Ein planarer Test
- Einfluss des Materialgesetzes
Anhang:
- Kurzvorstellung der PTC Simulationsdienstleistungen
- Wörterbuch technisches Englisch-Deutsch
|
3 |
Analysis of Hyperelastic Materials with Mechanica - Theory and Application Examples / Analyse hyperelastischer Materialien mit Mechanica - Theorie und AnwendungsbeispieleJakel, Roland 03 December 2010 (has links) (PDF)
Part 1: Theoretic background information
- Review of Hooke’s law for linear elastic materials
- The strain energy density of linear elastic materials
- Hyperelastic material
- Material laws for hyperelastic materials
- About selecting the material model and performing tests
- Implementation of hyperelastic material laws in Mechanica
- Defining hyperelastic material parameters in Mechanica
- Test set-ups and specimen shapes of the supported material tests
- The uniaxial compression test
- Stress and strain definitions in the Mechanica LDA analysis
Part 2: Application examples
- A test specimen subjected to uniaxial loading
- A volumetric compression test
- A planar test
- Influence of the material law
Appendix
- PTC Simulation Services Introduction
- Dictionary Technical English-German / Teil 1: Theoretische Hintergrundinformation
- Das Hookesche Gesetz für linear-elastische Werkstoffe
- Die Dehnungsenergiedichte für linear-elastische Materialien
- Hyperelastisches Material
- Materialgesetze für Hyperelastizität
- Auswählen des Materialgesetzes und Testdurchführung
- Implementierung der hyperelastischen Materialgesetze in Mechanica
- Definieren der hyperelastischen Materialparameter in Mechanica
- Testaufbauten und Prüfkörper der unterstützten Materialtests
- Der einachsige Druckversuch
- Spannungs- und Dehnungsdefinition in der Mechanica-Analyse mit großen
Verformungen
Teil 2: Anwendungsbeispiele
- Ein einachsig beanspruchter Prüfkörper
- Ein volumetrischer Drucktest
- Ein planarer Test
- Einfluss des Materialgesetzes
Anhang:
- Kurzvorstellung der PTC Simulationsdienstleistungen
- Wörterbuch technisches Englisch-Deutsch
|
4 |
Analysis of Hyperelastic Materials with Mechanica - Theory and Application ExamplesJakel, Roland 03 June 2010 (has links)
Part 1: Theoretic background information
- Review of Hooke’s law for linear elastic materials
- The strain energy density of linear elastic materials
- Hyperelastic material
- Material laws for hyperelastic materials
- About selecting the material model and performing tests
- Implementation of hyperelastic material laws in Mechanica
- Defining hyperelastic material parameters in Mechanica
- Test set-ups and specimen shapes of the supported material tests
- The uniaxial compression test
- Stress and strain definitions in the Mechanica LDA analysis
Part 2: Application examples
- A test specimen subjected to uniaxial loading
- A volumetric compression test
- A planar test
- Influence of the material law
Appendix
- PTC Simulation Services Introduction
- Dictionary Technical English-German / Teil 1: Theoretische Hintergrundinformation
- Das Hookesche Gesetz für linear-elastische Werkstoffe
- Die Dehnungsenergiedichte für linear-elastische Materialien
- Hyperelastisches Material
- Materialgesetze für Hyperelastizität
- Auswählen des Materialgesetzes und Testdurchführung
- Implementierung der hyperelastischen Materialgesetze in Mechanica
- Definieren der hyperelastischen Materialparameter in Mechanica
- Testaufbauten und Prüfkörper der unterstützten Materialtests
- Der einachsige Druckversuch
- Spannungs- und Dehnungsdefinition in der Mechanica-Analyse mit großen
Verformungen
Teil 2: Anwendungsbeispiele
- Ein einachsig beanspruchter Prüfkörper
- Ein volumetrischer Drucktest
- Ein planarer Test
- Einfluss des Materialgesetzes
Anhang:
- Kurzvorstellung der PTC Simulationsdienstleistungen
- Wörterbuch technisches Englisch-Deutsch
|
5 |
Analysis of Hyperelastic Materials with Mechanica - Theory and Application ExamplesJakel, Roland 03 December 2010 (has links)
Part 1: Theoretic background information
- Review of Hooke’s law for linear elastic materials
- The strain energy density of linear elastic materials
- Hyperelastic material
- Material laws for hyperelastic materials
- About selecting the material model and performing tests
- Implementation of hyperelastic material laws in Mechanica
- Defining hyperelastic material parameters in Mechanica
- Test set-ups and specimen shapes of the supported material tests
- The uniaxial compression test
- Stress and strain definitions in the Mechanica LDA analysis
Part 2: Application examples
- A test specimen subjected to uniaxial loading
- A volumetric compression test
- A planar test
- Influence of the material law
Appendix
- PTC Simulation Services Introduction
- Dictionary Technical English-German / Teil 1: Theoretische Hintergrundinformation
- Das Hookesche Gesetz für linear-elastische Werkstoffe
- Die Dehnungsenergiedichte für linear-elastische Materialien
- Hyperelastisches Material
- Materialgesetze für Hyperelastizität
- Auswählen des Materialgesetzes und Testdurchführung
- Implementierung der hyperelastischen Materialgesetze in Mechanica
- Definieren der hyperelastischen Materialparameter in Mechanica
- Testaufbauten und Prüfkörper der unterstützten Materialtests
- Der einachsige Druckversuch
- Spannungs- und Dehnungsdefinition in der Mechanica-Analyse mit großen
Verformungen
Teil 2: Anwendungsbeispiele
- Ein einachsig beanspruchter Prüfkörper
- Ein volumetrischer Drucktest
- Ein planarer Test
- Einfluss des Materialgesetzes
Anhang:
- Kurzvorstellung der PTC Simulationsdienstleistungen
- Wörterbuch technisches Englisch-Deutsch
|
Page generated in 0.1306 seconds