• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 172
  • 129
  • 33
  • 19
  • 13
  • 11
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • 3
  • Tagged with
  • 438
  • 116
  • 70
  • 67
  • 61
  • 54
  • 43
  • 39
  • 38
  • 36
  • 36
  • 34
  • 29
  • 28
  • 28
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
81

Inhibition and success of prymnesium parvum invasion on plankton communities in Texas, USA and prymnesium parvum pigment dynamics

Errera, Reagan Michelle 17 September 2007 (has links)
Prymnesium parvum Carter, a haptophyte species capable of forming harmful algal blooms (HABs), has been identified in fresh and brackish water habitats worldwide. In Texas, P. parvum blooms have diminished local community revenues from losses to tourism, fishing, and hatchery production. In this thesis, P. parvum dynamics were studied using in-situ microcosm experiments at Lake Possum Kingdom, Texas during three seasons (fall, winter, spring) in 2004-2005. Specifically, nutrient additions were used to test the hypothesis that increased nutrient levels would not enhance P. parvum's ability to invade phytoplankton communities. In addition to full nutrient additions to levels of f/2 media, other treatments included nutrient additions deficient in either nitrogen (N) or phosphorus (P). Additionally, barley straw extract was tested as a growth inhibitor to prevent P. parvum blooms. Furthermore, P. parvum initial population density was examined to test the hypothesis that increased initial populations could promote an increase in P. parvum population densities. Findings indicated that P. parvum populations in Lake Possum Kingdom would not likely gain a selective advantage over other species when inorganic nutrients (nitrogen and phosphorus) were not limiting. P. parvum did, however, gain an advantage during both N- and P-limited conditions as indicated by toxicity, cell concentrations, and bulk phytoplankton community shifts. Furthermore, P. parvum blooms in Lake Possum Kingdom would likely not be inhibited by barley straw extract application. Initial population densities affected the final population density, but only when initial populations were low. A method to quickly and accurately detect the presence of P. parvum is needed due to P. parvum's potential to cause toxic and lethal blooms. This thesis tested whether P. parvum photopigments are conservative regardless of growth conditions and could be used to quantify the relative abundance of P. parvum in mixed community samples. If biomarker pigments are conservative, then an optimized version of CHEMTAX could be employed as an alternative diagnostic tool to microscopy for enumeration of P. parvum. However, P. parvum pigments in the Texas strain were not conservative throughout the growth cycle and therefore may not be a reliable indicator of cell abundance.
82

The effects of winter feeding systems on beef cow performance, soil nutrients, crop yield and system economics

Kelln, Breeanna Maryella 05 February 2010
A study was conducted on an annual cropped field near Lanigan, Saskatchewan over two years (2005-2006, 2006-2007) to evaluate the effects of three extensive winter feeding systems (bale grazing (BG), swath grazing (SG) and straw-chaff grazing (ST-CH)) and one intensive winter feeding system (drylot (DL)) on cow performance, soil nutrients, crop yield and system cost of production.<p> Differences in BW (P<0.05) were observed during the 2005-2006 study period with the greatest difference occurring with cows in the SG feeding system. Cows grazing swaths (SG) had a BW loss of 8.0 kg over the 78 d trial period, however these cows consumed 15% less DM and 13% less TDN than cows bale grazing, grazing crop residue or fed in drylot pens. Differences in BW change (P<0.05) were also observed during Yr 2 between the cows fed drylot and cows grazing barley straw-chaff, 32.9 and 6.5 kg, respectively. This difference in body weight change (BW∆) and lower TDN consumption may be attributed to inaccessibility of the straw-chaff feed in the field, due to inclement weather and would suggest a lengthy acclimation period for extensive field grazing systems.<p> The effects of extensive winter feeding system on soil nutrients and soil structure were determined the following spring after winter grazing. NO3-N levels at the low slope position in the 0-15 cm depth were 53% higher on the BG sites than the ST-CH sites. This may be attributed to the larger concentration of feed, thus feed nutrients, in the BG feeding system. Phosphorus levels on the BG wintering sites were 34% higher than levels in the SG or ST-CH sites. Crop biomass measured on the BG sites was consistent with soil nutrients captured, resulting in a 15% increase in biomass compared to ST-CH and SG sites. Soil nutrient and crop biomass distribution was consistent among winter grazing sites with the ST-CH sites having the most uniform distribution of nutrients and crop biomass, and the BG sites having the least.
83

Feedstock and process variables influencing biomass densification

Shaw, Mark Douglas 17 March 2008
Densification of biomass is often necessary to combat the negative storage and handling characteristics of these low bulk density materials. A consistent, high-quality densified product is strongly desired, but not always delivered. Within the context of pelleting and briquetting, binding agents are commonly added to comminuted biomass feedstocks to improve the quality of the resulting pellets or briquettes. Many feedstocks naturally possess such binding agents; however, they may not be abundant enough or available in a form or state to significantly contribute to product binding. Also, process parameters (pressure and temperature) and material variables (particle size and moisture content) can be adjusted to improve the quality of the final densified product.<p>Densification of ground biomass materials is still not a science, as much work is still required to fully understand how the chemical composition and physical properties, along with the process variables, impact product quality. Generating densification and compression data, along with physical and mechanical properties of a variety of biomass materials will allow for a deeper understanding of the densification process. This in turn will result in the design of more efficient densification equipment, thus improving the feasibility of using biomass for chemical and energy production.<p>Experiments were carried out wherein process (pressure and temperature) and material (particle size and moisture content) variables were studied for their effect on the densification process (compression and relaxation characteristics) and the physical quality of the resulting products (pellets). Two feedstocks were selected for the investigation; namely, poplar wood and wheat straw, two prominent Canadian biomass resources. Steam explosion pretreatment was also investigated as a potential method of improving the densification characteristics and binding capacity of the two biomass feedstocks.<p> Compression/densification and relaxation testing was conducted in a closed-end cylindrical die at loads of 1000, 2000, 3000, and 4000 N (31.6, 63.2, 94.7, and 126.3 MPa) and die temperatures of 70 and 100°C. The raw poplar and wheat straw were first ground through a hammer mill fitted with 0.8 and 3.2 mm screens, while the particle size of the pretreated poplar and wheat straw was not adjusted. The four feedstocks (2 raw and 2 pretreated) were also conditioned to moisture contents of 9 and 15% wb prior to densification. <p> Previously developed empirical compression models fitted to the data elucidated that along with particle rearrangement and deformation, additional compression mechanisms were present during compression. Also, the compressibility and asymptotic modulus of the biomass grinds were increased by increasing the die temperature and decreasing product moisture content. While particle size did not have a significant effect on the compressibility, reducing it increased the resultant asymptotic modulus value. Steam explosion pretreatment served to decrease the compressibility and asymptotic modulus of the grinds.<p>In terms of physical quality of the resulting product, increasing the applied load naturally increased the initial density of the pellets (immediately after removal from the die). Increasing the die temperature served to increase the initial pellet density, decrease the dimensional (diametral and longitudinal) expansion (after 14 days), and increase the tensile strength of the pellets. Decreasing the raw feedstock particle size allowed for the increase in initial pellet density, decrease in diametral expansion (no effect on longitudinal expansion), and increase in tensile strength of the pellets. Decreasing the moisture content of the feedstocks allowed for higher initial pellet densities, but also an increased dimensional expansion. The pretreated feedstocks generally had higher initial pellet densities than the raw grinds. Also, the pretreated feedstocks shrank in diameter and length, and had higher tensile strengths than the raw feedstocks. The high performance of the pretreated poplar and wheat straw (as compared to their raw counterparts) was attributed to the disruption of the lignocellulosic structure, and removal/hydrolysis of hemicellulose, during the steam pretreatment process which was verified by chemical and Fourier transform infrared analysis. As a result, a higher relative amount of lignin was present. Also, the removal/hydrolysis of hemicellulose would indicate that this lignin was more readily available for binding, thus producing superior pellets.
84

Field plot conditions for the expression and selection of straw fibre concentration in oilseed flax

Burton, Alison Dana 30 August 2007
In Canada, flax (<i>Linum usitatissimum</i> L.) is grown for its seed oil. However, a major disadvantage associated with growing oilseed flax is that the straw is difficult to incorporate into the soil after harvest. Instead, the majority of flax straw is burned in the field, increasing the workload for farmers, as well as creating air pollution. Agronomic concerns are also associated with burning, since it leaves fields vulnerable to wind and water erosion. A small market exists for Canadian flax straw for making high quality paper products and some plastic composites. However, fibre-based and fibre-using industries are growing world wide, and flax straw fibre is becoming an important product. Flax straw fibre concentration varies among cultivars and environments. Consistently high fibre concentrations are essential if the fibre in oilseed flax is to become an important product for Canadian farmers. This study assembled the agronomic information necessary to select for increased straw fibre concentration in the Crop Development Centre (CDC) Flax Breeding Program. Three experiments were conducted to determine: how seeding rate and row spacing effects straw fibre concentration, the effects of seeding date on straw fibre concentration, and how nitrogen fertilizer rates effects straw fibre concentration. Seeding in mid-May at either an 18 or 36 cm row spacing at a seeding rate of 30 or 45 kg/ha resulted in high straw fibre concentration without reducing other important oilseed characteristics such as seed yield, oil content and straw fibre yield. Nitrogen fertilizer did not have an effect on either straw fibre concentration or straw fibre yield.
85

Densification of selected agricultural crop residues as feedstock for the biofuel industry

Adapa, Phani Kumar 07 September 2011
The two main sources of biomass for energy generation are purpose-grown energy crops and waste materials. Energy crops, such as Miscanthus and short rotation woody crops (coppice), are cultivated mainly for energy purposes and are associated with the food vs. fuels debate, which is concerned with whether land should be used for fuel rather than food production. The use of residues from agriculture, such as barley, canola, oat and wheat straw, for energy generation circumvents the food vs. fuel dilemma and adds value to existing crops. In fact, these residues represent an abundant, inexpensive and readily available source of renewable lignocellulosic biomass. In order to reduce industrys operational cost as well as to meet the requirement of raw material for biofuel production, biomass must be processed and handled in an efficient manner. Due to its high moisture content, irregular shape and size, and low bulk density, biomass is very difficult to handle, transport, store, and utilize in its original form. Densification of biomass into durable compacts is an effective solution to these problems and it can reduce material waste. Upon densification, many agricultural biomass materials, especially those from straw and stover, result in a poorly formed pellets or compacts that are more often dusty, difficult to handle and costly to manufacture. This is caused by lack of complete understanding on the natural binding characteristics of the components that make up biomass. An integrated approach to postharvest processing (chopping, grinding and steam explosion), and feasibility study on lab-scale and pilot scale densification of non-treated and steam exploded barley, canola, oat and wheat straw was successfully established to develop baseline data and correlations, that assisted in performing overall specific energy analysis. A new procedure was developed to rapidly characterize the lignocellulosic composition of agricultural biomass using the Fourier Transform Infrared (FTIR) spectroscopy. In addition, baseline knowledge was created to determine the physical and frictional properties of non-treated and steam exploded agricultural biomass grinds. Particle size reduction of agricultural biomass was performed to increase the total surface area, pore size of the material and the number of contact points for inter-particle bonding in the compaction process. Predictive regression equations having higher R2 values were developed that could be used by biorefineries to perform economic feasibility of establishing a processing plant. Specific energy required by a hammer mill to grind non-treated and steam exploded barley, canola, oat and wheat straw showed a negative power correlation with hammer mill screen sizes. Rapid and cost effective quantification of lignocellulosic components (cellulose, hemicelluloses and lignin) of agricultural biomass (barley, canola, oat and wheat) is essential to determine the effect of various pre-treatments (such as steam explosion) on biomass used as feedstock for the biofuel industry. A novel procedure to quantitatively predict lignocellulosic components of non-treated and steam exploded barley, canola, oat and wheat straw was developed using Fourier Transformed Infrared (FTIR) spectroscopy. Regression equations having R2 values of 0.89, 0.99 and 0.98 were developed to predict the cellulose, hemicelluloses and lignin compounds of biomass, respectively. The average absolute difference in predicted and measured cellulose, hemicellulose and lignin in agricultural biomass was 7.5%, 2.5%, and 3.8%, respectively. Application of steam explosion pre-treatment on agricultural straw significantly altered the physical and frictional properties, which has direct significance on designing new and modifying existing bins, hoppers and feeders for handling and storage of straw for biofuel industry. As a result, regression equations were developed to enhance process efficiency by eliminating the need for experimental procedure while designing and manufacturing of new handling equipment. Compaction of low bulk density agricultural biomass is a critical and desirable operation for sustainable and economic availability of feedstock for the biofuel industry. A comprehensive study of the compression characteristics (density of pellet and total specific energy required for compression) of ground non-treated and steam exploded barley, canola, oat and wheat straw obtained from three hammer mill screen sizes of 6.4, 3.2 and 1.6 mm at 10% moisture content (wb) was conducted. Four preset pressures of 31.6, 63.2, 94.7 and 138.9 MPa, were applied using an Instron testing machine to compress samples in a cylindrical die. It was determined that the applied pressure (60.4%) was the most significant factor affecting pellet density followed by the application of steam explosion pre-treatment (39.4%). Similarly, the type of biomass (47.1%) is the most significant factor affecting durability followed by the application of pre-treatment (38.2%) and grind size (14.6%). Also, the applied pressure (58.3%) was the most significant factor affecting specific energy required to manufacture pellets followed by the biomass (15.3%), pre-treatment (13.3%) and grind size (13.2%), which had lower but similar effect affect on specific energy. In addition, correlations for pellet density and specific energy with applied pressure and hammer mill screen sizes having highest R2 values were developed. Higher grind sizes and lower applied pressures resulted in higher relaxations (lower pellet densities) during storage of pellets. Three compression models, namely: Jones model, Cooper-Eaton model, and Kawakita-Ludde model were considered to determine the pressure-volume and pressure-density relationship of non-treated and steam exploded straws. Kawakita-Ludde model provided the best fit to the experimental data having R2 values of 0.99 for non-treated straw and 1.00 for steam exploded biomass samples. The steam exploded straw had higher porosity than non-treated straw. In addition, the steam exploded straw was easier to compress since it had lower yield strength or failure stress values compared to non-treated straw. Pilot scale pelleting experiments were performed on non-treated, steam exploded and customized (adding steam exploded straw grinds in increments of 25% to non-treated straw) barley, canola, oat and wheat straw grinds obtained from 6.4, 3.2, 1.6 and 0.8 mm hammer mill screen sizes at 10% moisture content (wb). The pilot scale pellet mill produced pellets from ground non-treated straw at hammer mill screen sizes of 0.8 and 1.6 mm and customized samples having 25% steam exploded straw at 0.8 mm. It was observed that the pellet bulk density and particle density are positively correlated. The density and durability of agricultural straw pellets significantly increased with a decrease in hammer mill screen size from 1.6 mm to 0.8 mm. Interestingly, customization of agricultural straw by adding 25% of steam exploded straw by weight resulted in higher durability (> 80%) pellets but did not improve durability compared to non-treated straw pellets. In addition, durability of pellets was negatively correlated to pellet mill throughput and was positively correlated to specific energy consumption. Total specific energy required to form pellets increased with a decrease in hammer mill screen size from 1.6 to 0.8 mm and also the total specific energy significantly increased with customization of straw at 0.8 mm screen size. It has been determined that the net specific energy available for production of biofuel is a significant portion of original agricultural biomass energy (89-94%) for all agricultural biomass.
86

Densification of selected agricultural crop residues as feedstock for the biofuel industry

Adapa, Phani Kumar 07 September 2011 (has links)
The two main sources of biomass for energy generation are purpose-grown energy crops and waste materials. Energy crops, such as Miscanthus and short rotation woody crops (coppice), are cultivated mainly for energy purposes and are associated with the food vs. fuels debate, which is concerned with whether land should be used for fuel rather than food production. The use of residues from agriculture, such as barley, canola, oat and wheat straw, for energy generation circumvents the food vs. fuel dilemma and adds value to existing crops. In fact, these residues represent an abundant, inexpensive and readily available source of renewable lignocellulosic biomass. In order to reduce industrys operational cost as well as to meet the requirement of raw material for biofuel production, biomass must be processed and handled in an efficient manner. Due to its high moisture content, irregular shape and size, and low bulk density, biomass is very difficult to handle, transport, store, and utilize in its original form. Densification of biomass into durable compacts is an effective solution to these problems and it can reduce material waste. Upon densification, many agricultural biomass materials, especially those from straw and stover, result in a poorly formed pellets or compacts that are more often dusty, difficult to handle and costly to manufacture. This is caused by lack of complete understanding on the natural binding characteristics of the components that make up biomass. An integrated approach to postharvest processing (chopping, grinding and steam explosion), and feasibility study on lab-scale and pilot scale densification of non-treated and steam exploded barley, canola, oat and wheat straw was successfully established to develop baseline data and correlations, that assisted in performing overall specific energy analysis. A new procedure was developed to rapidly characterize the lignocellulosic composition of agricultural biomass using the Fourier Transform Infrared (FTIR) spectroscopy. In addition, baseline knowledge was created to determine the physical and frictional properties of non-treated and steam exploded agricultural biomass grinds. Particle size reduction of agricultural biomass was performed to increase the total surface area, pore size of the material and the number of contact points for inter-particle bonding in the compaction process. Predictive regression equations having higher R2 values were developed that could be used by biorefineries to perform economic feasibility of establishing a processing plant. Specific energy required by a hammer mill to grind non-treated and steam exploded barley, canola, oat and wheat straw showed a negative power correlation with hammer mill screen sizes. Rapid and cost effective quantification of lignocellulosic components (cellulose, hemicelluloses and lignin) of agricultural biomass (barley, canola, oat and wheat) is essential to determine the effect of various pre-treatments (such as steam explosion) on biomass used as feedstock for the biofuel industry. A novel procedure to quantitatively predict lignocellulosic components of non-treated and steam exploded barley, canola, oat and wheat straw was developed using Fourier Transformed Infrared (FTIR) spectroscopy. Regression equations having R2 values of 0.89, 0.99 and 0.98 were developed to predict the cellulose, hemicelluloses and lignin compounds of biomass, respectively. The average absolute difference in predicted and measured cellulose, hemicellulose and lignin in agricultural biomass was 7.5%, 2.5%, and 3.8%, respectively. Application of steam explosion pre-treatment on agricultural straw significantly altered the physical and frictional properties, which has direct significance on designing new and modifying existing bins, hoppers and feeders for handling and storage of straw for biofuel industry. As a result, regression equations were developed to enhance process efficiency by eliminating the need for experimental procedure while designing and manufacturing of new handling equipment. Compaction of low bulk density agricultural biomass is a critical and desirable operation for sustainable and economic availability of feedstock for the biofuel industry. A comprehensive study of the compression characteristics (density of pellet and total specific energy required for compression) of ground non-treated and steam exploded barley, canola, oat and wheat straw obtained from three hammer mill screen sizes of 6.4, 3.2 and 1.6 mm at 10% moisture content (wb) was conducted. Four preset pressures of 31.6, 63.2, 94.7 and 138.9 MPa, were applied using an Instron testing machine to compress samples in a cylindrical die. It was determined that the applied pressure (60.4%) was the most significant factor affecting pellet density followed by the application of steam explosion pre-treatment (39.4%). Similarly, the type of biomass (47.1%) is the most significant factor affecting durability followed by the application of pre-treatment (38.2%) and grind size (14.6%). Also, the applied pressure (58.3%) was the most significant factor affecting specific energy required to manufacture pellets followed by the biomass (15.3%), pre-treatment (13.3%) and grind size (13.2%), which had lower but similar effect affect on specific energy. In addition, correlations for pellet density and specific energy with applied pressure and hammer mill screen sizes having highest R2 values were developed. Higher grind sizes and lower applied pressures resulted in higher relaxations (lower pellet densities) during storage of pellets. Three compression models, namely: Jones model, Cooper-Eaton model, and Kawakita-Ludde model were considered to determine the pressure-volume and pressure-density relationship of non-treated and steam exploded straws. Kawakita-Ludde model provided the best fit to the experimental data having R2 values of 0.99 for non-treated straw and 1.00 for steam exploded biomass samples. The steam exploded straw had higher porosity than non-treated straw. In addition, the steam exploded straw was easier to compress since it had lower yield strength or failure stress values compared to non-treated straw. Pilot scale pelleting experiments were performed on non-treated, steam exploded and customized (adding steam exploded straw grinds in increments of 25% to non-treated straw) barley, canola, oat and wheat straw grinds obtained from 6.4, 3.2, 1.6 and 0.8 mm hammer mill screen sizes at 10% moisture content (wb). The pilot scale pellet mill produced pellets from ground non-treated straw at hammer mill screen sizes of 0.8 and 1.6 mm and customized samples having 25% steam exploded straw at 0.8 mm. It was observed that the pellet bulk density and particle density are positively correlated. The density and durability of agricultural straw pellets significantly increased with a decrease in hammer mill screen size from 1.6 mm to 0.8 mm. Interestingly, customization of agricultural straw by adding 25% of steam exploded straw by weight resulted in higher durability (> 80%) pellets but did not improve durability compared to non-treated straw pellets. In addition, durability of pellets was negatively correlated to pellet mill throughput and was positively correlated to specific energy consumption. Total specific energy required to form pellets increased with a decrease in hammer mill screen size from 1.6 to 0.8 mm and also the total specific energy significantly increased with customization of straw at 0.8 mm screen size. It has been determined that the net specific energy available for production of biofuel is a significant portion of original agricultural biomass energy (89-94%) for all agricultural biomass.
87

Wheat Straw-Polypropylene Composites

Kruger, Paula Kapustan January 2007 (has links)
Composites are combinations of mainly two different components: the matrix and the filler/reinforcement. In the thermoplastic composites industry, natural fibers from agricultural crops have been emerged as alternative fillers. Crops such as wheat straw are renewable and low cost materials that, combined with thermoplastics such as polypropylene, provide engineering products with unique characteristics. The objective of this study was to investigate the influence of processing conditions and composite formulation in the final properties of the composites. For these purposes wheat straw fibres and polypropylene (PP) were compounded in a batch mixer under a number of different thermal conditions and formulations. Fiber loading in the range from 0 to 60 wt-% was examined and the individual effects of two coupling agents (maleic anhydride modified polypropylene and maleic acid ethylene copolymer) and a lubricant were also studied. Particle size, morphology, thermal and mechanical properties and water uptake behaviour were inspected with appropriate techniques. Wheat straw particle size distribution was studied through image analysis; distribution curves for length and width of the particles were recorded in two stages of the project: previous and after compounding the natural material with polypropylene. Morphology of wheat straw particles and wheat straw-polypropylene composites were analyzed by scanning electron microscopy (SEM). Thermal properties including melting temperature and crystallization temperature of composites and pure resin were obtained from differential scanning calorimetry (DSC) performed on the samples; percentage of crystallinity was also calculated from the heat of fusion obtained from those tests. Mechanical properties, such as flexural modulus and flexural yield strength, were accessed in a miniature materials tester. Water absorption of selected composite samples was evaluated after immersion of the samples in a water bath. Water absorption curves were used to calculate the water diffusion coefficient (diffusivity) of the composites. Image analysis revealed the changes in the wheat straw structure due to shear forces during processing and improvement of adhesion between matrix and filler in compositions containing coupling agent. Small changes in the percentage of crystallinity of the thermoplastic phase were observed in all composites tested. Flexural tests revealed behaviour trends for the composites tested. Water uptake appeared to be a severe problem on natural fiber composites due to color fading, dimension instability and significant weight gains. Results from this work allowed the determination of some effects of processing temperature, fiber loading and use of additives on the final properties of wheat straw- polypropylene composites, thus making contributions to the scientific work that has been realized on natural fiber composites.
88

Wheat Straw-Polypropylene Composites

Kruger, Paula Kapustan January 2007 (has links)
Composites are combinations of mainly two different components: the matrix and the filler/reinforcement. In the thermoplastic composites industry, natural fibers from agricultural crops have been emerged as alternative fillers. Crops such as wheat straw are renewable and low cost materials that, combined with thermoplastics such as polypropylene, provide engineering products with unique characteristics. The objective of this study was to investigate the influence of processing conditions and composite formulation in the final properties of the composites. For these purposes wheat straw fibres and polypropylene (PP) were compounded in a batch mixer under a number of different thermal conditions and formulations. Fiber loading in the range from 0 to 60 wt-% was examined and the individual effects of two coupling agents (maleic anhydride modified polypropylene and maleic acid ethylene copolymer) and a lubricant were also studied. Particle size, morphology, thermal and mechanical properties and water uptake behaviour were inspected with appropriate techniques. Wheat straw particle size distribution was studied through image analysis; distribution curves for length and width of the particles were recorded in two stages of the project: previous and after compounding the natural material with polypropylene. Morphology of wheat straw particles and wheat straw-polypropylene composites were analyzed by scanning electron microscopy (SEM). Thermal properties including melting temperature and crystallization temperature of composites and pure resin were obtained from differential scanning calorimetry (DSC) performed on the samples; percentage of crystallinity was also calculated from the heat of fusion obtained from those tests. Mechanical properties, such as flexural modulus and flexural yield strength, were accessed in a miniature materials tester. Water absorption of selected composite samples was evaluated after immersion of the samples in a water bath. Water absorption curves were used to calculate the water diffusion coefficient (diffusivity) of the composites. Image analysis revealed the changes in the wheat straw structure due to shear forces during processing and improvement of adhesion between matrix and filler in compositions containing coupling agent. Small changes in the percentage of crystallinity of the thermoplastic phase were observed in all composites tested. Flexural tests revealed behaviour trends for the composites tested. Water uptake appeared to be a severe problem on natural fiber composites due to color fading, dimension instability and significant weight gains. Results from this work allowed the determination of some effects of processing temperature, fiber loading and use of additives on the final properties of wheat straw- polypropylene composites, thus making contributions to the scientific work that has been realized on natural fiber composites.
89

Moisture Movement and Mould Management in Straw Bale Walls for a Cold Climate

Bronsema, Nicholas Rangco 27 September 2010 (has links)
There is a growing interest in straw bale construction for its low embodied energy and insulation value. Early studies of its structural behaviour and fire resistance have shown it to be a viable alternative to traditional building techniques. However, the biggest remaining obstacle to widespread acceptance is the moisture behaviour within the straw bale walls, especially as it concerns mould growth. The uncertainty of this behaviour leads to the hesitation of building officials and insurance providers to freely accept straw bale construction. Therefore, this study investigates the moisture, temperature and mould growth in straw bale walls, through a combination of analysis, dynamic modeling and field studies. A study of mould is presented along with the current methods available for predicting mould growth. Moisture is the primary controllable factor to mould growth in buildings. Therefore, an understanding of moisture accumulation within straw bale walls is necessary to provide a safe design that precludes mould growth. This study compiles the current state of knowledge of the hygrothermal properties of the materials used in straw bale walls. Then a parametric steady-state analysis is conducted to show the expected behaviour of vapour diffusion and the effects of the material properties. Two 14”thick x 6’ wide x 8’ high straw bale test walls were constructed: one was rendered with a typical cement-lime plaster and the other with a clay plaster. Temperature and moisture were monitored throughout the walls for over a year. These test walls provide more information on the macro behaviour of the walls to both vapour diffusion and, more importantly, rain. Hygrothermal computer modeling was conducted and compared to the test data to assess its accuracy. Thermal modeling was successful, while moisture modeling was found to be more difficult due to a lack of accurate rain data. With better climate data it is expected that accurate hygrothermal modeling of straw bale walls is possible. The result of this work is a general starting point for more detailed studies of the hygrothermal behaviour of straw bale walls with the ultimate goal of assessing the mould risk for various construction techniques and locations.
90

Mechanical Behaviour, Water Absorption and Morphology of Wheat Straw, Talc, Mica and Wollastonite filled Polypropylene Composites

Mohan Sharma, Arathi January 2012 (has links)
Polypropylene continues to be the mainstream choice thermoplastic for automotive applications. In many applications PP is filled with mineral fillers for improvement of properties. Biobased natural fillers or fibres are attractive materials to reduce the weight because of the low specific gravity of the biobased materials compared to the mineral fillers. Our group has done extensive research on the development of wheat straw fiber in thermoplastics in the past years. It is very important to understand the behaviour of single fillers on composites before studying the effects of mixing fillers or fibers (hybridization). The objective of this study is to evaluate and compare systematically the effects of wheat straw and mineral fillers in the polypropylene matrix. The study includes two types of wheat straw (WS) categorized based on their size (fine WS and medium WS) and three different types of natural minerals (Talc, Mica and Wollastonite). Three types of polypropylene (PP), Homopolymer PP, High Impact Copolymer PP and Homopolymer-Copolymer Blend PP, were investigated as the matrix. This study also evaluates the effect of combining two fillers (WS and mineral filler) in the hybrid composite. The fillers were formulated in three different percentages (20, 30 and 40wt %) and compounded via extrusion. Samples for all formulations were prepared by injection molding. The mechanical properties (flexural modulus and strength, tensile modulus and strength, impact strength), water absorption and density were measured. The properties of hybrid composites were evaluated by varying the amounts of two fillers at 10wt%-20wt%, 15wt%-15wt% and 20wt%-10wt% each, keeping the overall filler content constant at 30wt%. The effect of type of filler, filler size and filler content were critical in this work. The results obtained from this study indicated that filler type and filler content greatly influenced the mechanical properties and water absorption characteristics of the composites. The flexural modulus increased with increasing filler content. It was interesting to observe that though the impact strength decreased with the addition of fillers, increasing the filler content from 20 to 40 wt% did not affect the property. With respect to all fillers, wollastonite improved the mechanical properties significantly. Increasing the amount of WS content reduced the composite’s resistance to water absorption. Among mineral fillers, mica showed significantly higher percentage gain in weight with water absorption. Combination of fillers at varying percentages did not have any synergy effect on the mechanical behaviour of the composite. The percentage increase in weight with water absorption was observed to be increasing with increasing WS content in hybrid composites, but significantly lower than pure WS composites. The morphological study on WS composites revealed improved interaction of filler with homopolymer and polypropylene blend.

Page generated in 0.0666 seconds