• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 36
  • 9
  • 6
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 78
  • 25
  • 17
  • 15
  • 14
  • 10
  • 8
  • 8
  • 7
  • 7
  • 7
  • 7
  • 7
  • 7
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

The effect of wheat soilborne mosaic virus on agronomic characters of wheat

Nykaza, Scott M. January 1978 (has links)
Call number: LD2668 .T4 1978 N94 / Master of Science
12

Possible factors influencing the transmission and control of the soil-borne wheat mosaic virus in Kansas

Addison, Emmanuel Appiah. January 1965 (has links)
Call number: LD2668 .T4 1965 A22 / Master of Science
13

Transmission of soil-borne wheat mosaic virus

Pacumbaba, Rodulfo P. January 1966 (has links)
Call number: LD2668 .T4 1966 P122 / Master of Science
14

Inheritance of resistance to wheat streak mosaic virus in wheat line KS06HW79

Curato, John January 1900 (has links)
Master of Science / Department of Agronomy / Guorong Zhang / Guihua Bai / Wheat streak mosaic virus (WSMV) is a disease that causes significant yield losses in wheat (Triticum aestivum L.). Host resistance is the primary approach for control. KS06HW79 is a wheat line with WSMV resistance up to 21°C. To study the inheritance of resistance in KS06HW79, it was crossed with two WSMV-susceptible wheat genotypes, KS020638-M-5 and Brawl CL Plus. Parental lines, F₁, F₂, and check varieties were mechanically inoculated and evaluated for WSMV resistance at 21°C in growth chambers. The segregation pattern in two F₂ populations fit a one-recessive-gene model (1 resistant : 3 susceptible) and a dominant-suppression-epistasis model (3 resistant : 13 susceptible). To determine which model was a better fit, WSMV resistance was evaluated for F₂:₃ families generated from resistant F₂ plants in both crosses. Approximately two thirds of the F₂:₃ families in each cross showed segregation for WSMV resistance, suggesting that the dominant-suppression epistasis model better explained the WSMV resistance in KS06HW79. This model was also supported by two KS06HW79-derived doubled haploid populations, which had a segregation ratio of 1 resistant : 3 susceptible. Therefore, the WSMV resistance in KS06HW79 is likely controlled by two dominant genes, one of which is a suppressor.
15

Resistance of Agrotricums to wheat streak mosaic

Pfannenstiel, Mary Ann January 2011 (has links)
Digitized by Kansas Correctional Industries
16

Reaction of Parker and Eagle wheats to wheat streak mosaic virus

Young, John Robert January 2011 (has links)
Digitized by Kansas Correctional Industries
17

Improved compressed sensing algorithm for sparse-view CT

2013 October 1900 (has links)
In computed tomography (CT) there are many situations where reconstruction may need to be performed with sparse-view data. In sparse-view CT imaging, strong streak artifacts may appear in conventionally reconstructed images due to the limited sampling rate, compromising image quality. Compressed sensing (CS) algorithm has shown potential to accurately recover images from highly undersampled data. In the past few years, total variation (TV)-base compressed sensing algorithms have been proposed to suppress the streak artifact in CT image reconstruction. In this paper, we formulate the problem of CT imaging under transform sparsity and sparse-view constraints, and propose a novel compressed sensing-based algorithm for CT image reconstruction from few-view data, in which we simultaneously minimize the ℓ1 norm, total variation and a least square measure. The main feature of our algorithm is the use of two sparsity transforms: discrete wavelet transform and discrete gradient transform, both of which are proven to be powerful sparsity transforms. Experiments with simulated and real projections were performed to evaluate and validate the proposed algorithm. The reconstructions using the proposed approach have less streak artifacts and reconstruction errors than other conventional methods.
18

Effect of nozzle guide vane shaping on high pressure turbine stage performance

Rahim, Amir January 2017 (has links)
This thesis presents a computational fluid dynamic (CFD) study of high pressure gas turbine blade design with different realistic inlet temperature and velocity boundary conditions. The effects of blade shaping and inlet conditions can only be fully understood by considering the aerodynamics and heat transfer concurrently; this is in contrast to the sequential method of blade design for aerodynamics followed by cooling. The inlet boundary conditions to the NGV simulations are governed by the existence of discrete fuel injectors in the combustion chamber. An appreciation of NGV shaping design under engine realistic inflow conditions will allow for an identification of the correct three dimensional shaping parameters that should be considered for design optimisation. The Rolls-Royce efficient Navier-Stokes solver, HYDRA, was employed in all computational results for a transonic turbine stage. The single passage unsteady method based on the Fourier Shape Correction is adopted. The solver is validated under both rich burn (hot steak only) and the case with swirl inlet profiles for aerothermal characteristics; good agreement is noted with the validation data. Post processing methods were used in order to obtain time-averaged results and blade visualisations. Subsequently, a surrogate design optimisation methodology using machine learning combined with a Genetic Algorithm is implemented and validated. A study of the effect of NGV compound lean on stage performance is carried out and contrasted for uniform and rich burn inlets, and subsequently for lean burn. Compound lean is shown to produce a tip uploading at the rotor inlet, which is beneficial for rich burn, but detrimental for lean burn. It is also found that for rich burn, fluid driving temperature is more dominant than HTC in determining rotor blade heat transfer, the opposite sense to the uniform inlet. Also, for a lean burn inlet, there is another role reversal, with HTC dominating fluid driving temperature in determining heat transfer. A novel NGV design methodology is proposed that seeks to mitigate the combined effects of inlet hot streak and swirling flow. In essence, the concept two NGVs in a pair are shaped independently of each other, thus allowing the inlet flow non uniformity to be suitably accommodated. Finally, two numerical NGV optimisation studies are undertaken for the combined hot streak and swirl inlet for two clocking positions; vane impinging and passage aligned. Due to the prohibitive cost of unsteady CFD simulations for an optimisation strategy, a suitable objective function at the NGV exit plane is used to minimise rotor tip heat flux. The optimised shape for the passage case resulted in the lowest tip heat flux distribution, however the optimum shape for the impinging case led to the highest gain in stage efficiency. This therefore suggests that NGV lean and clocking position should be a consideration for future optimisation and design of the HP stage.
19

Optical method for liquid sorption measurements in paper

Fabritius, T. (Tapio) 17 April 2007 (has links)
Abstract This thesis presents an effective optical method for measuring liquid sorption into paper. From the two tested methods, based on a streak-camera and optical coherence tomography (OCT), the last-mentioned proved very promising for investigating dynamical paper-liquid interactions as spatially and temporally dependent processes. The streak-camera measurements were performed to explore the relationship between paper properties and light migration in dry and refractive index matched paper in general. Based on streak-camera measurements, a novel procedure for determining the average refractive index of cellulose fibre tissue was also presented here. In addition, the streak camera method lent itself to paper porosity determination. Results of the performed OCT measurements proved that liquids cannot penetrate into paper before filling the pores and pits of the paper surface. As a liquid penetrated into paper, the border between the wetted and dry area could be investigated in the depth direction. The liquid penetration velocity seemed to be slower at the beginning and end of the process. Liquid absorption into paper fibres could be investigated concurrently. For the first time, the location and moment of structural changes in paper could be determined during wetting, and the effect of three different coexistent subprocesses related to paper wetting could be detected. OCT only fell short of detecting the effect of liquid migration along fibres. Despite the limitations of the utilized method (resolution, probing depth and depth scanning rate), the obtained OCT measurement results are very promising for the development of an effective paper wetting measurement device for industrial applications. Even if this thesis focused on paper wetting, it is reasonable to assert that the presented ideas and obtained results have more general value in terms of explaining liquid penetration into porous structures and offer an alternative method of evaluating that process.
20

Structural and functional characterization of a Xanthomonas Type III effector

Wu, Shuchi 23 April 2015 (has links)
Rice bacterial leaf streak disease caused by Xanthomonas oryzae pv. oryzicola (Xoc) is one of the most important rice bacterial diseases. Xanthomonas type III effector gene avrRxo1 is conserved in diverse Xoc strains and its homologues have been identified from several other gram-negative bacteria species such as Burkholderia and Acidovorax. In this research, we studied the protein structure of AvrRxo1 and illustrated its virulence mechanism.We determined the three-dimensional structure of the complex of AvrRxo1 and its cognate chaperone Arc1 (AvrRxo1 required chaperone 1). The AvrRxo1: Arc1 complex is structurally similar to the Zeta-epsilon family of toxin: antitoxin systems from the human bacterial pathogen Streptococcus pyogenes. AvrRxo1 and Arc1 have toxin: antitoxin-like activity in bacteria, and the toxin activity of AvrRxo1 is required for its virulence function in planta. These findings suggest that AvrRxo1 evolved from an endogenous bacterial toxin-antitoxin system.Furthermore, AvrRxo1 was shown to have virulence functions in diverse host plants including Arabidopsis thaliana. The ectopic expression of wild type avrRxo1 in Arabidopsis suppresses plant basal defense. AtVOZ (Arabidopsis vascular one zinc-finger transcription factor), which has two homologues in the Arabidopsis genome, VOZ1 and VOZ2, was identified as one of AvrRxo1 candidate interactor. The knockout of voz1/voz2 renders the plants more susceptible to the virulent pathogen Pseudomonas syringae pv. tomato (Pst) DC3000, but compromises the virulence function of AvrRxo1. The expression profiling of transgenic Arabidopsis plants expressing the avrRxo1 gene allowed us to identify Arabidopsis genes regulated by AvrRxo1 and VOZ1/2. AvrRxo1 interacts with and stabilizes VOZ2 in vivo and directly binds to the promoter region of AtCYS2 (Arabidopsis phytoCYStatin 2) to induce its expression. The overexpression of CYS2 in increased stomatal aperture size, and enhanced plant susceptibility to Pst. Therefore one of AvrRxo1 virulent functions is to regulate the expression of CYS2 by manipulating VOZ2, resulting in increased stomatal aperture. Presumably, this renders the host leaf more susceptible to colonization via the stomata. Another component of my dissertation was based on a genome-wide survey of Arabidopsis papin-like cysteine protease genes (PLCPs). The Arabidopsis genome has 31 PLCP and 7 cystatin genes, and they often worked in pairs to regulate signaling pathways in response to biotic and abiotic stress. The coordinated transcriptional regulation of all Arabidopsis PLCP and cystatin genes has never been systematically investigated. In order to unveil the mechanism of stomata-related plant immunity regulated by CYS2, we analyzed the expression patterns of 28 PLCPs and 7 cystatins in Arabidopsis in response to biotic or abiotic stress, by reprocessing and integrating microarray data from the AtGenExpress database. We also performed enzyme assays and evaluated the inhibition specificity of seven cystatins to the five most abundant PLCPs in Arabidopsis. Finally, we utilized the SVMs (support vector machines) package in R software to predict a functional network of PLCP-cystatin interplay in Arabidopsis. We identified the PLCP protein PAP4 as one of the putative targets of CYS2. The co-expression profiling indicated that the expression patterns of PAP4 and CYS2 were strongly correlated during virulent bacterial infection, and weakly correlated under drought stress. Therefore, PAP4 was determined to be a promising gene in regulating stomatal aperture size. Further research on the interplay of PAP4-CYS2 could be important for understanding AvrRxo1's virulence mechanism and regulation of plant stomatal immunity. / Ph. D.

Page generated in 0.0325 seconds