• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 3
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Nitrogen spiraling in stream ecosystems spanning a gradient of chronic nitrogen loading

Earl, Stevan Ross 26 October 2004 (has links)
This dissertation is a study of the relationships between nitrogen (N) availability and spiraling (the paired processes of nutrient cycling and advective transport) in stream ecosystems. Anthropogenic activities have greatly increased rates of N loading to aquatic ecosystems. However, streams may be important sites for retention, removal, and transformation of N. In order to identify controls on NO3-N spiraling in anthropogenically impacted streams, I examined relationships among NO3-N spiraling and a suite of chemical, physical, and biological variables in streams spanning a gradient of N concentration. Across all streams, gross primary production (GPP) accounted for most NO3-N demand. Uptake of NO3-N was also related to GPP but was limited by N availability when N concentrations were low. A combination of GPP and NO3-N explained 80% of the variance in uptake. In chapter 3, I conducted a series of short-term nutrient releases in which streamwater NO3-N concentration was incrementally elevated to identify conditions leading to saturation of uptake capacity. Four of six study streams showed signs of N limitation whereas there was no significant change in uptake with increasing NO3-N amendment in two streams, suggesting N saturation. Proximity to saturation was generally correlated to N concentration but was also predicted by the ratio of N:P. My results suggest complex relationships between N spiraling and availability that depend on resident biota and other limiting factors. In chapter 4, I examined nutrient spiraling methodology by comparing differences between ambient and amendment-derived NO3-N spiraling metrics. I quantified spiraling metrics during a short-term NO3-N amendment and under ambient conditions using a stable isotope (15NO3-N) tracer. Uptake lengths measured during amendments were consistently longer than ambient uptake lengths. Amendment-derived NO3-N uptake velocity and uptake were underestimated relative to ambient conditions. Using a technique to estimate ambient uptake length extrapolated from the relationship between uptake length and nutrient amendment concentration for a series of amendments at different concentrations, I found that extrapolated uptake lengths were generally better predictors of ambient uptake lengths than amendment-derived uptake lengths but the technique was less effective in high N streams that showed signs of weak N limitation. / Ph. D.
2

Biologic and Hydrologic Controls of Water Quality in Urbanizing Semi-Arid Watersheds

Jones, Erin Fleming 06 December 2019 (has links)
This dissertation analyzed the effect of biologic and hydrologic processes on water quality in urban, semi-arid watersheds. In the first chapter, we analyzed bacterioplankton and water quality along elevation and urbanization gradients in three Wasatch Mountain watersheds across three seasons. We found that trace metals correlated with bacterioplankton composition and that the typical dispersal of bacteria from headwater sources (soil or groundwater) along the longitudinal pathway was drastically disrupted by the presence of large reservoirs. In the second chapter, we used high-frequency sensor data collected in streams above and below the urban center in the three watersheds to estimate the relative contribution of biologic, hydrologic, and anthropogenic processes to changes in nitrate concentration. In-stream metabolism correlated with less than 38% of diel fluctuations in nitrate, but diel nitrate concentration only represented 10% of the total nitrate variability, demonstrating how in-stream uptake can easily be overwhelmed by nutrient loading in even moderately modified watersheds. A majority of the nitrate was associated with hydrologic variables, specifically discharge and specific conductivity, with pulses of nitrate corresponding to anthropogenic activity that far exceeded the capability of the system to remove or process the nitrogen. In the third chapter, we used citizen science to collect synoptic solute data to analyze the catchment hydrology in one of the Wasatch watersheds (Provo River and Utah Lake). Unlike previous research from humid and temperate catchments, we did not observe a systematic decrease in spatial variability with watershed size in this semi-arid, endorheic basin. Our results demonstrate the value of combining participatory science with modern ecohydrological methods to determine catchment chemistry and hydrology. This dissertation shows how hydrology, and anthrophenic changes to watersheds that affect hydrology, are largely responsible for determining water quality in urbanizing, semi-arid watersheds.
3

Hydrological and biogeochemical dynamics of nitrate production and removal at the stream – ground water interface

Zarnetske, Jay P. 07 September 2011 (has links)
The feedbacks between hydrology and biogeochemical cycling of nitrogen (N) are of critical importance to global bioavailable N budgets. Human activities are dramatically increasing the amount of bioavailable N in the biosphere, which is causing increasingly frequent and severe impacts on ecosystems and human welfare. Streams are important features in the landscape for N cycling, because they integrate many sources of terrestrially derived N and control export to downgradient systems via internal source and sink processes. N transformations in stream ecosystems are typically very complex due to spatiotemporal variability in the factors controlling N biogeochemistry. Thus, it is difficult to predict if a particular stream system will function as a net source or sink of bioavailable N. A key location for N transformations in stream ecosystems is the hyporheic zone, where stream and ground waters mix. The hyporheic zone can be a source of bioavailable N via nitrification or a sink via denitrification. These N transformations are regulated by the physical and biogeochemical conditions of hyporheic zones. Natural heterogeneity in streams leads to unique combinations of both the physical and biogeochemical conditions which in turn result in unique N source and sink conditions. This dissertation investigates the relationships between physical and biogeochemical controls and the resulting fate of bioavailable N in hyporheic zones. The key physical factor investigated is the supply rate of solutes which is a function of transport processes - advection and dispersion, and transport conditions - hydraulic conductivity and flowpath length. Different physical conditions result in different characteristic residence times of water and solutes in hyporheic zones. The key biogeochemical factors investigated are the dynamics of oxygen (O₂), labile dissolved organic carbon (DOC), and inorganic bioavailable N (NH₄⁺ and NO₃⁻). This dissertation uses ¹⁵N isotope experiments, numerical modeling of coupled transport of the bioavailable N species, O₂ and DOC, and a suite of geophysical measurements to identify the key linkages between hydrological and biogeochemical controls on N transformations in hyporheic zones. Specifically, it was determined that the conditions governing the fate of hyporheic N are both the physical transport and reaction kinetics – the residence time of water and the O2 uptake rate. An important scaling relationship is developed by relating the characteristic timescales of residence time and O₂ uptake. The resulting dimensionless relationship, the Damköhler number for O₂, is useful for scaling different streams hyporheic zones and their role on stream N source – sink dynamics. More generally, these investigations demonstrate that careful consideration and quantification of hydrological processes can greatly inform the investigation of aquatic biogeochemical dynamics and lead to the development of process-based knowledge. In turn, this process-based knowledge will facilitate more robust approaches to quantifying and predicting biogeochemical cycles and budgets. / Graduation date: 2012 / Access restricted to the OSU Community at author's request from Sept. 21, 2011 - March 21, 2012

Page generated in 0.0706 seconds