• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 53
  • 27
  • 19
  • 11
  • 5
  • 5
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 151
  • 151
  • 53
  • 27
  • 24
  • 23
  • 22
  • 21
  • 18
  • 18
  • 17
  • 16
  • 15
  • 14
  • 14
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Wind Effects on Water Exchange and Residence Time in Ta-pong Bay

Chang, Hsiang-an 13 July 2005 (has links)
Ta-pong Bay is a shallow coastal lagoon located at the southwestern Taiwan, with only one inlet permanently connecting to the sea. The water exchange, flowing out or into the Bay, is chiefly driven by tidal force. Many kinds of nutrition are gradually accumulated in the Bay, leading to the situation of eutrophication to be more serious. This research utilizes the POM numerical model (Princeton Ocean Model) to simulate the circulation of Ta-pong Bay and long-term water mass transportation. Further, we had used a towed ADCP to survey the flow fields of the Bay and set up a fixed ADCP to measured local velocity for 15 days, for helping us more to understand the flow field. This study using high-resolution 3-D numerical model had been developed with 50m by 50m horizontal resolutions to calculate the problem of water exchange of the lagoon. The model is driven by tidal force, northerly and southerly wind stress. The model results show that the tide-generated force is quite revealed at the tidal inlet where the biggest velocity can researches to 1 m/s during ebb tide, 0.5 m/s during flood tide. The low-frequency motion of the bay is mainly driven by wind stress. The residual current is about 0.03 m/s during blowing northerly wind and about 0.05 m/s during blowing southerly wind. Generally speaking, the average residence time in the south of the lagoon is over 30 days and in the central bay is about 7~12 days and in the north of the lagoon near the tidal mouth is about 1~2 days.
2

FUNDAMENTAL CHARACTERIZATION OF TRIBOLOGICAL, THERMAL, FLUID DYNAMIC AND WEAR ATTRIBUTES OF CONSUMABLES IN CHEMICAL MECHANICAL PLANARIZATION

Wei, Xiaomin January 2010 (has links)
This dissertation presents several studies relating to fundamental characterization of CMP consumables in planarization processes. These are also evaluated with the purposes of minimizing environmental impact and reducing cost of ownership (COO).The first study is conducted to obtain the retaining ring wear rate in a typical ILD CMP process and is specifically intended to investigate the effect of retaining ring materials and slot designs during the CMP process. The results show that retaining ring materials have effect on the COF, pad temperature and retaining ring wear rate, while retaining ring slot designs affect the pad surface abruptness. The second study is performed to compare the effect of different retaining ring slot designs on the slurry film thickness within the pad-wafer interface. A novel non-intrusive optical technique, dual emission UV-enhanced fluorescence (DEUVEF), was applied to accurately measure the film thickness of the slurry underneath the wafer during polishing. It is indicated that the optimized retaining ring slot design can significantly reduce the COO of CMP processes by increasing slurry utilization.A COF method is applied to measure the slurry mean residence time (MRT) during CMP. This technique uses transient COF data induced by a shift in slurry concentration to determine MRT. Variations in consumables as well as sliding velocity, pressure and slurry flow rate can affect the slurry MRT. One study in this dissertation focus on the effect of retaining ring slot designs on the slurry MRT. Another study compares the slurry MRT under same polishing conditions using pads with different groove width. Both studies are conducted on multiple sliding velocity, pressure and slurry flow rate variations to understand the characteristics of consumable designs. The method of measuring MRT during polishing presented in this dissertation can be easily applied in general CMP processes.The subsequent studies focus in the diamond conditioner discs characterization techniques. A newly developed method for determining active diamonds and aggressive diamonds on a diamond conditioner disc under a certain vertical load is elaborated in this dissertation. Later, this technique together with scanning electron microscopy (SEM) imaging is implemented to analyze diamond pullout and fracture in CMP. Five different types of diamond conditioner discs are subjected to a novel accelerated wear test respectively to compare the extent of diamond pullout and fracture under the same conditioning condition
3

Non-traditional grains in low and high moisture extrusion applications –residence time, physico-chemical properties and resistant starch

Kumar, Rajesh January 1900 (has links)
Master of Science / Department of Grain Science and Industry / Sajid Alavi / Sorghum, millets and teff are important staple crops worldwide, especially in semi-arid regions of Africa and India because of their drought tolerance. However, lack of research and other limitations have restricted their usage in food products. This study is focused on extrusion processing of low and high tannin sorghum varieties, millet and teff for high and low moisture applications, and to investigate process characteristics such as residence time distribution and specific mechanical energy, physico-chemical properties of resultant food products (such as pre-cooked pasta and expanded snacks) and their resistance starch content. Results from preliminary lab scale extrusion, including optimization of starch type and level for pre-cooked pasta and in-barrel moisture for expanded snacks, were used to design pilot-scale studies on a twin-screw extruder. In the first pilot-scale experiment, decorticated white sorghum blends prepared with addition of mono-glycerides (0.5%, 1% and1.5%) and salt (1%) were processed at three different in-barrel moisture contents 40%, 44% and 48% (wet basis) for processing of precooked pasta. The optimum formulation containing 1% mono-glycerides and process conditions corresponding to 48% in-barrel moisture were also used to develop precooked teff and millet pasta. The non-traditional grain based pastas were investigated for cooking quality, thermal characteristics using differential scanning calorimeter, pasting properties using rapid visco analyzer and texture profile analysis. In general, increasing in-barrel moisture led to reduction in solid losses (ranging from 4.0-8.2% for all treatments), indicating improvement in cooking quality. On the other hand, increase in mono-glycerides concertation led to higher cooking losses, and also affected pasting and textural properties significantly. Sorghum-based precooked pasta was of best quality while millet pasta was poorest in cooking quality, visual and textural attributes. Cooking loss for control pre-cooked pasta produced in this experiment using semolina was 4.5%, and commercial semolina pasta was 3.2%. Residence time distribution in pilot-scale twin screw extruder, during high moisture process conditions used for pre-cooked pasta, was also investigated at three different in-barrel moistures (40%, 44% and 48%) and monoglycerides/ lipid (0.5, 1% and 1.5%) concentrations. Increase in in-barrel moisture significantly decreased mean residence time. For example, mean residence time was 4.47 min at 40% moisture, 3.89 min at 44% and 3.74 min at 48%. On the contrary, residence time significantly increased with lipid level. For example, mean residence time was 3.87 min at 0.5% concentration of mono-glycerides, 4.48 min at 1% and 4.70 min 1.5%. In the second experiment focusing on low moisture applications, pilot-scale twin screw extrusion was used to process decorticated white sorghum and high tannin sumac sorghum for expanded snacks. The addition of sumac bran decreased the specific mechanical energy input (366-578 kJ/kg) and expansion ratio (6.4-7.9), and resulted in higher piece density of extrudates. Use of sumac bran and sumac flour led to increase in resistant starch content, although it was less than 1% for all treatments. Therefore, extrusion with ingredients having high tannin content does not provide value, despite tannins being associated with resistant starch at least in raw materials.
4

Liquid Residence Time Distribution in Micro-reactors with Complex Geometries

Hopley, Alexandra January 2018 (has links)
Micro-reactors, enabling continuous processes at small scales, have been of growing interest due to their advantage over batch. These advantages include better scaling, as well as improved mass and heat transfer, though many new challenges arise due to the small scales involved such as non-negligible entrance effects and significant pressure drops. The flow in coils, rectangular channel serpentine plates, mix-and-reside plates, and complex liquid-liquid mixing plates was investigated and characterized using residence time distribution (RTD) tests. A pulse test was used to determine the RTD curve shape of these reactors at flowrates ranging from 20 to 100 g/min. A semi-empirical, multi-parameter model was used to describe the asymmetrical curves, while the axial dispersion model was used to describe the symmetrical ones. The Peclet number is given in function of the Reynolds number for the liquid-liquid plates that were found to be near-plug flow (Pe > 100). In a continuous mixing plate, the Pe ranged from 190 to 475 with Pe increasing as Re increased. The effect of straight channel sections in micro-reactors is also evaluated. Longer straight segments between micromixers resulted in the development of unidirectional flow and the occurrence of tailing in the RTD. Finally, the suitability of a liquid-liquid plate for a reactive liquid-solid system is evaluated. The plugging is determined visually and by measuring pressure increase; pressure started to increase after 5 minutes and the experiment had to be halted after 10 minutes due to plugging. Parallels between the particle size distribution and the residence time distribution curves are drawn. The particle size distribution of silver chloride at low flow rates is much wider than at high flowrates. The average particle size at high flowrates was also much lower (≈69nm) than at low flowrates (≈112nm).
5

Redesign of Industrial Column Flotation Circuits Based on a Simple Residence Time Distribution Model

Kennedy, Dennis Lee 25 November 2008 (has links)
The potential for improved selectivity has made column flotation cells a popular choice for upgrading fine coal. Unfortunately, recent production data from full-scale column plants indicate that many industrial installations have failed to meet original expectations in terms of clean coal recovery. Theoretical studies performed using a simple dispersion model showed that this inherent shortcoming could be largely minimized by reconfiguring the columns to operate in series as a cell-to-cell circuit. Follow-up field data showed that this low-cost modification increased flotation recovery as predicted by the dispersion model. This study presents the key findings obtained from the field investigation and provides generic guidelines for designing multi-stage column circuits. / Master of Science
6

Effect of Residence Time on Microbial and Chemical Quality of Reclaimed Water In Urban Infrastructures

Ajibode, Oluyomi Marriet January 2012 (has links)
The goal of this study was to assess the effect of residence time on the chemical and microbial quality of reclaimed water in two distribution systems located in southern Arizona. Utility A produced Class A water and utilized chlorine as a means of disinfection whereas Utility B produced Class A+ water and utilized UV radiation as a means of disinfection. Water-based pathogens were consistently detected in both distribution systems beyond the point of compliance, while microbial indicators like Escherichia coli was only detected in Utility B suggesting that treatment eliminated waterborne pathogens. Heterotrophic plate concentrations in samples from both utilities initially increased rapidly with increased distance from the point-of-compliance and were as high as 10⁹ CFU/100ml. Regardless of the initial level of treatment, the microbial quality deteriorated with increased residence time in the distribution systems. The second study was designed to evaluate the effect of reclaimed water storage on microbial and chemical quality of two classes of reclaimed water (Class A and Class A+). In Class A water, nitrification was observed during both field scale trials resulting in concentrations greater than 10mg/L while nitrification was not observed in Class A+. Chlorine residuals rapidly decreased within 48hours of storage. HPC concentration were as high as 10⁷ - 10⁸ /100ml. In both field scale trials, there was no observed growth of HPC during storage and waterborne indicator bacteria were rarely detected, and if detected, only at low concentrations. Based on this data, deterioration of microbial water quality during storage is minimal.
7

Slurry Mean Residence Time Analysis and Pad-Wafer Contact Characterization in Chemical Mechanical Planarization

Mu, Yan, Mu, Yan January 2016 (has links)
This dissertation presents a series of studies related to the slurry mean residence time analysis and the pad-wafer contact characterization in Chemical Mechanical Planarization (CMP). The purpose of these studies is to further understand the fundamentals of CMP and to explore solutions to some of CMP's challenges. Mean residence time (MRT) is a widely used term that is mostly seen in classical chemical engineering reactor analysis. In a CMP process, the wafer-pad interface can be treated as a closed system reactor, and classical reactor theory can be applied to the slurry flow through the region. Slurry MRT represents the average time it takes for fresh incoming slurry to replace the existing slurry in the region bound between the pad and the wafer. Understanding the parameters that have an impact on MRT, and therefore removal rate, is critical to maintain tight specifications in the CMP process. In this dissertation, we proposed a novel slurry injection system (SIS) which efficiently introduced fresh slurry into the pad-wafer interface to reduce MRT. Results indicated that SIS exhibited lower slurry MRT and dispersion numbers but higher removal rates than the standard pad center slurry application by blocking the spent slurry and residual rinse water from re-entering the pad-wafer interface during polishing. Another study in this dissertation dealt with the effect of pad groove width on slurry MRT in the pad-wafer interface as well as slurry utilization efficiency (η). Three concentrically grooved pads with different groove widths were tested at different polishing pressures to experimentally determine the corresponding MRT using the residence time distribution (RTD) technique. Results showed that MRT and η increased significantly when the groove width increased from 300 to 600μm. On the other hand, when the groove width increased further to 900μm, MRT continued to increase while n remained constant. Results also indicated that MRT was reduced at a higher polishing pressure while η did not change significantly with pressure for all three pads. In the last study of this dissertation, the effect of pad surface micro-texture on removal rate during tungsten CMP was investigated. Two different conditioner discs ("Disc A" and "Disc B") were employed to generate different pad surface micro-textures during polishing. Results showed that "Disc B" generated consistently lower removal rates and coefficients of friction than "Disc A". To fundamentally elucidate the cause(s) of such differences, pad surface contact area and topography were analyzed using laser confocal microscopy. The comparison of the pad surface micro-texture analysis on pad surfaces conditioned by both discs indicated that "Disc A" generated a surface having a smaller abruptness (λ) and more solid contact area which resulted in a higher removal rate. In contrast, "Disc B" generated many large near-contact areas as a result of fractured and collapsed pore walls.
8

Distribution Patterns of Lead-210 and Polonium-210 Along the Gaoping Submarine Canyon

Shen, Ya-ting 09 September 2008 (has links)
Abstract The purposes of this study are to understand the variations of the particulate and dissolved 210Pb and 210Po profiles in the water column of Gaoping Submarine Canyon(GSC) and to compare the distributions of the two nuclides in settling particles and sediments. Different types of samples taken in this area were analyzed for 210Pb and 210Po in order to understand processes involved in the particulate transport. Seawater samples were collected from Ocean Researcher III Cruise (ORIII-1192 in Nov, 2006). Sediment trap was deployed on Jun 21, 2000 and recovered on Jul 20, 2000 (ORIII-634). Sediments cores collected from ORIII-642 on Jul 21, 2000 (Core A-B) and ORIII-696 on Apr 7, 2001 (Core D-F) using multicorer. The profiles of 210Pb and 210Po in water column could be divided into two types one is estuarine and the other is oceanic. The profiles of dissolved nuclides in estuarine stations (CW1 to 3) are lower than in the oceanic stations (CW4-5). Because stations CW1 to 3 are controlled by large amount of terrigenous particles, scavenging in the three stations is quite obvious. The nuclide activities of the settling particles decrease with depth, probably due to dilution by resuspended surface sediment of lower activities, similar to observations in this study area. The downcore distributions of 210Pb and 210Po show clearly disequilibria between the two nuclides and suggested that sediment deposited in GSC has been disturbed down to 40-50 cm deep. All the data indicate the 210Po in the water column and in the settling particles as well as in the surface sediments is strongly deficient relative to its parent, 210Pb. Using a box-model and considering the influence of horizontal transports, we may calculate the residence times of 210Po in the 100m water layer in the GSC, to be 2.1d for the dissolved phase and 7.0 d for the particulate phase with a total 210Pb residence time is 3.8d.
9

IMPROVING WATER STORAGE OF RECLAMATION SOIL COVERS BY FRACTIONATION OF COARSE-TEXTURED SOIL

2013 September 1900 (has links)
Mining operations lead to considerable land disturbance and accumulation of large amounts of waste rock that may contain elevated concentrations of hazardous substances. Without proper capping, they may have considerable negative environmental impact on different spheres of the Earth. Capping of waste rock with a soil cover re-creates the water and nutrient regimes required for the growth of native plants and returns biological productivity and biodiversity of the land to a condition similar to that existing before site disturbance. In many cases the area of disturbance is composed of coarse-textured materials with low water retention properties, which are not desirable in semi-arid zones. This study was conducted to determine (1) whether a considerable increase of water storage is possible after separation of coarse-textured soil into size fractions and layering them in such a way that the finer fraction overlies the coarser fraction; and (2) whether such soil covers are susceptible to preferential flow under various initial and boundary conditions and what influence this type of flow has on residence time. Four types of soil covers were constructed in chambers: homogeneous covers composed of natural sand, two-layered covers with abrupt and gradual interlayer transitions, and four layered soil covers with abrupt transitions. Soil water storage was measured at field capacity (FC). Soil covers were tested under two types of lower boundary conditions: gravel layer and -25-cm matric potential. Flow stability was assessed during intermittent and constant ponded infiltrations. Water storage capacities (WSCs) for soil covers with -25-cm matric potential at the bottom of a cover were additionally simulated in HYDRUS-1D. Water storage capacities increased with the number of layers under both lower boundary conditions. Two-layered covers with a transition layer had slightly lower water storage than the same cover without the transition, due to a decreased hydraulic contrast at the layer interface. Simulated WSCs under -25-cm matric potential at the bottom were in satisfactory agreement with measured WSCs. The wetting front was stable in the homogeneous cover under both initially dry and FC conditions and in the two-layered cover with a gradual transition under initially dry water content during intermittent ponded infiltration. Unstable flow was observed only in the two-layered soil cover under both initial water contents. Other covers were partially unstable under initially air-dry and FC conditions. Generally, the wetting front was more diffuse at FC. Flow in all covers was stable under constant ponded infiltration. The residence time of water increased with the increase in the number of layers under both types of infiltration. Results of the study show that WSC and residence time do increase with increasing number of layers in soil covers, where layers are composed of different fractions of coarse-textured soil. In addition, tested soil covers have shown limited susceptibility to preferential flow even when layered into finer-over-coarser soil systems.
10

Interpreting Residence Time Distributions in Water Treatment Systems

Jansons, Ketah Unknown Date (has links)
This thesis establishes residence time distribution (RTD) as a key tool for the investigation of water treatment systems. RTD software for tracer data modelling and interpretation is developed and validated for problem solving purposes in water treatment systems. The technique focuses on the systematic interpretation of RTD data using a tanks-in-series based model and an indicator, flushing time (tf ). This approach removes the subjectivity often associated with RTD interpretation and is tested extensively using experimental and numerical data. The influence of design elements, intended to enhance hydraulic efficiency, is also addressed. For this purpose, both numerical modelling (Mike 21) and the proposed approach are employed. Results reveal that the interpretive provides valuable information, facilitating a greater understanding of the hydraulic effects of changes to geometry and inlet/outlet configuration than other techniques alone. The approach was shown to be particularly successful at interpreting RTD curves from stormwater treatment systems due to their susceptibility to stagnation. However, it was shown to have limited applicability in systems with complex flow characteristics (such as large bioreactor vessels) or those susceptible to extensive short-circuiting. The approach was also found to be unsuitable for evaluating the impact of deviations from ideal flow on pollutant removal in systems governed by complex biokinetic reactions.

Page generated in 0.0903 seconds