• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 12
  • 2
  • Tagged with
  • 14
  • 14
  • 7
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

A Mineral Analysis of the Henrietta Water Supply

Selvidge, R. F. January 1941 (has links)
The water which supplies the city of Henrietta, Clay County, Texas, is obtained from the Little Wichita River. A concrete dam was built across the river at a point about a mile and a half north of town.
12

Hydrological and biogeochemical dynamics of nitrate production and removal at the stream – ground water interface

Zarnetske, Jay P. 07 September 2011 (has links)
The feedbacks between hydrology and biogeochemical cycling of nitrogen (N) are of critical importance to global bioavailable N budgets. Human activities are dramatically increasing the amount of bioavailable N in the biosphere, which is causing increasingly frequent and severe impacts on ecosystems and human welfare. Streams are important features in the landscape for N cycling, because they integrate many sources of terrestrially derived N and control export to downgradient systems via internal source and sink processes. N transformations in stream ecosystems are typically very complex due to spatiotemporal variability in the factors controlling N biogeochemistry. Thus, it is difficult to predict if a particular stream system will function as a net source or sink of bioavailable N. A key location for N transformations in stream ecosystems is the hyporheic zone, where stream and ground waters mix. The hyporheic zone can be a source of bioavailable N via nitrification or a sink via denitrification. These N transformations are regulated by the physical and biogeochemical conditions of hyporheic zones. Natural heterogeneity in streams leads to unique combinations of both the physical and biogeochemical conditions which in turn result in unique N source and sink conditions. This dissertation investigates the relationships between physical and biogeochemical controls and the resulting fate of bioavailable N in hyporheic zones. The key physical factor investigated is the supply rate of solutes which is a function of transport processes - advection and dispersion, and transport conditions - hydraulic conductivity and flowpath length. Different physical conditions result in different characteristic residence times of water and solutes in hyporheic zones. The key biogeochemical factors investigated are the dynamics of oxygen (O₂), labile dissolved organic carbon (DOC), and inorganic bioavailable N (NH₄⁺ and NO₃⁻). This dissertation uses ¹⁵N isotope experiments, numerical modeling of coupled transport of the bioavailable N species, O₂ and DOC, and a suite of geophysical measurements to identify the key linkages between hydrological and biogeochemical controls on N transformations in hyporheic zones. Specifically, it was determined that the conditions governing the fate of hyporheic N are both the physical transport and reaction kinetics – the residence time of water and the O2 uptake rate. An important scaling relationship is developed by relating the characteristic timescales of residence time and O₂ uptake. The resulting dimensionless relationship, the Damköhler number for O₂, is useful for scaling different streams hyporheic zones and their role on stream N source – sink dynamics. More generally, these investigations demonstrate that careful consideration and quantification of hydrological processes can greatly inform the investigation of aquatic biogeochemical dynamics and lead to the development of process-based knowledge. In turn, this process-based knowledge will facilitate more robust approaches to quantifying and predicting biogeochemical cycles and budgets. / Graduation date: 2012 / Access restricted to the OSU Community at author's request from Sept. 21, 2011 - March 21, 2012
13

Dynamics of streamflow and stream chemistry in a Swiss pre-Alpine headwater catchment : A fine scale investigation of flow occurrence and electrical conductivity in the temporary streams in the lower Studibach catchment / Dynamiken hos bäckflöden och bäckkemi i ett Schweiziskt pre-Alpint avrinningsområde av första ordningen : En finskalig undersökning av förekomsten av vattenflöde och elektrisk konduktivitet i temporära bäckar i den nedre delen av avrinningsområdet Studibach

Baumann, Elise, Berglund, Hanna January 2021 (has links)
Temporary streams and their dynamics have often been largely overseen in hydrological research and there is relatively little knowledge about how the occurrence of flow in these streams varies temporally and spatially. Temporary streams are important from a hydro- logical perspective because they affect water quantity and quality in downstream peren- nial reaches, and from an ecological perspective because they provide habitat to unique species. In order to gain knowledge about these important streams, this maser thesis was conducted, within the Msc program in Water and Environmental Engineering at Uppsala University and the Swedish University of Agricultural Sciences, in collaboration with the Hydrology and Climate group at the University of Zurich. In this study, the temporal and spatial variation of the temporary streams in a small pre-Alpine catchment in Switzerland were investigated, both in terms of the presence of flowing water and stream chemistry. The 20 ha Studibach catchment is typical for the pre-Alpine area, with frequent precipi- tation. The streams in the lower part of the Studibach catchment were mapped in the field during September 2020. The temporal and spatial variations of the presence of flow and stream chemistry within the stream network was investigated in September and October 2020 during varying weather conditions. During ten field campaigns the flow state of the streams was classified and the Electrical Conductivity (EC) of the streams was mea- sured approximately every 20 meter. The findings from the field campaigns were related to topographic indices, in particular the Topographic Wetness Index (TWI) and Upslope Accumulated Area (A), in order to see how topography influenced the presence of stream- flow and stream EC. The results show a high temporal and spatial variation in both stream chemistry and streamflow. The active network length expanded by a factor of two in re- sponse to precipitation events. The stream EC also had a large spatial variation, and the streams in the southeast part of the catchment had a higher EC than the other streams. This spatial variation is expected to reflect the large variability in groundwater EC within the catchment. The spatial variation of the streamflow demonstrated a difference between the north-middle and the south part of the catchment, where the south part responded quicker to events and drained and retracted faster after the event. The findings also indicate that topographic indices can predict the occurrence of flow in the stream network, with sites with higher topographic index values having a higher probability of flowing water in the stream. Topography also influences the stream chemistry. The variation in stream chem- istry was smaller for sites with higher values for the topographic indices, something that can be explained by the Representative Elementary Area (REA) concept, because sites with higher topographic index values are located further downstream and water at these locations is a mixture of the smaller streams that feed these streams. / Temporära bäckar och dess dynamik har länge varit förbisedda inom hydrologisk forskn- ing, och en djupgående kunskap rörande temporära och rumsliga variationer saknas. Tem- porära bäckar är viktiga utifrån ett hydrologisk perspektiv eftersom de påverkar både kvantitet och kvalitet på vattnet nedströms, och från ett ekologiskt perspektiv eftersom de bidrar med habitat till unika arter. Detta examensarbete har genomförts för att öka kunskapen kring dynamiken i dessa temporära nätverk. Examensarbetet genomfördes inom Civilingenjörsprogrammet i Miljö och Vattenteknik vid Uppsala Universitet och Sveriges Lantbruksuniversitet, i ett samarbete med Hydrologi- och Klimatgruppen vid University of Zurich. Studien har undersökt temporära och rumsliga variationer i ett tem- porärt bäcknätverk med avseende på flöden och kemin i vattnet, i ett mindre pre-alpint avrinningsområde i centrala Schweiz. Bäckarna i den nedre delen av avrinningsområdet Studibach karterades i fält för hand med karta och kompass under september 2020. Avrin- ningsområdet är på 20 ha och räknas som typiskt för ett pre-Alpint område, med frekvent nederbörd. Tio fältkampanjer genomfördes där temporära och rumsliga variationer un- dersöktes genom klassificering av flöden och mätningar av Elektrisk Konduktivitet (EC) i bäckarna ungefär var 20e meter, under september och oktober 2020 i varierande väder- förhållanden. Resultaten från fältkampanjerna relaterades till de topografiska indexen Topographic Wetness Index (TWI) och Upslope Accumulated Area (A) för att undersöka hur topografin påverkar flöden och bäckkemin. Studien kom fram till att bäckarna i den nedre delen av Studibach visar både en temporär och en rumslig variation för både flöde och bäckkemi. De aktiva bäckarna i nätverket visade på en expansion med en faktor två som svar på nederbörd. En rumslig variation för flödet påträffades även mellan den södra och nord-centrala delen av nätverket där den södra svarade snabbare mot event och även drogs ihop snabbare. Kemin i bäckvattnet visade på en stor rumslig variation, med högt EC i den sydöstra delen av avrinningsområdet, vilket förmodas bero på den stora rumsliga variationen av EC i grundvattnet. Resultaten visar även på att topografiska index kan till viss del förutspå flöden i bäckarna, där platser med högre topografiska index har högre sannolikhet att det flödar i bäcken. Topografin påverkar även bäckkemin. Variationen i bäckkemin var mindre för platser med högre topografiska index, vilket kan förklaras med Representative Elementary Area (REA) konceptet, eftersom platser med högre to- pogragiska index värden återfinns längre nedströms och vattnet på dessa platser är en blandning av de mindre bäckarna som tillför vattnet till de större.
14

The influence of contemporary forest management on stream nutrient concentrations in an industrialized forest in the Oregon Cascades

Meininger, William Scott 19 December 2011 (has links)
The increased demand for wood and fiber from a continually shrinking land base has resulted in the use of intensively managed forest plantations. The concentration of timber production on the most suitable sites allows the world's demand for forest products to be met on less land and enable native forests to be conserved. Because much of the water flowing in rivers in the U.S. originates as precipitation in forests, there is a justified concern about the impacts of forest management on water quality. Nutrient concentrations were measured in eight streams from October 2002 to September 2011 to assess nutrient response to contemporary forest practices at the Hinkle Creek Paired Watershed Study in the Oregon Cascades. This period of time included a two-year pre-treatment calibration between control and treatment watersheds, a fertilization treatment of both basins in October 2004, and a post-treatment period from 2005 to 2011. A treatment schedule comprised of two temporally explicit harvest entries was used to assess the effects of clearcutting at the non-fish-bearing headwater scale and the fish-bearing watershed scale. Stream water samples were analyzed for nitrogen, phosphorus, calcium, sodium, potassium, magnesium, sulfate, chloride, and silicon as well as specific conductance, pH, and alkalinity. Programmable water samplers were used to take water samples during fall freshets in November 2009 to assess the stream water discharge versus NO₃ + NO₂ concentration relationship. All treatment watersheds showed a statistically significant increase in NO₃ + NO₂ concentrations after clearcutting (p < 0.001). The slope of the streambed through the disturbance was a stronger predictor of the magnitude of the response than was the magnitude of disturbance. Ammonia and organic nitrogen displayed notable increases after harvest treatment, but these increases were attributed to increases in the control watersheds. Phosphorus showed a response to timber harvest in one headwater stream. The remaining nutrients showed a small decrease in the control and treatment watersheds for the period after harvest. There was some evidence to suggest that the addition of urea nitrogen to both basins may have caused an increase in in-stream biota uptake of these nutrients. The storm response results showed that NO₃ + NO₂ concentrations in stream water increase with discharge during small storms that occur after periods of negligible precipitation. Concentrations of NO₃ + NO₂ observed during the calibration period were similar to concentrations observed in an old-growth forest in the H.J. Andrews, suggesting that nutrient processing within the Hinkle Creek watershed had returned to levels that existed prior to its initial harvest sixty years ago. This finding helps to assess long-term impacts of shorter rotation timber harvest of regenerated Douglas-fir stands characteristic of industrialized timber harvest in Oregon. / Graduation date: 2012

Page generated in 0.0693 seconds