Spelling suggestions: "subject:"4hupstream function""
1 |
Analytical models of mean secondary velocities and stream functions under different bed-roughness configurations in wide open-channel turbulent flowsKundu, S., Chattopadhyay, T., Pu, Jaan H. 11 February 2022 (has links)
Yes / Turbulence-induced secondary currents are commonly present in straight natural as well as artificial open channels without bed forms. Different structures of cellular secondary currents can be seen in open-channel flows due to various bed configurations. In our study, mathematical models of turbulence-induced secondary currents in the vertical and transverse directions within a straight open rectangular channel with alternate rough and smooth longitudinal bed strips are proposed. The proposed models are derived using appropriate theoretical and mathematical analysis. Most of the previous models of secondary currents in the literature are proposed empirically and without proper mathematical derivations. The effects of fluid viscosity and eddy diffusivity are included in the present study to make it more practical. Initially, the governing equation for vertical secondary flow velocity is derived from continuity and the Reynolds-Averaged Navier Stokes equations. Then, the proposed problem is divided into two sub-considerations, corresponding to the base flow and perturbed flow. Finally, these sub-problems are analytically solved using method of variables separation with suitable boundary conditions. Different models to consider two different types of bed-roughness configurations (i.e. equal and unequal lengths of smooth and rough longitudinal bed strips) are obtained. Apart from velocity formulations, models of the stream function are proposed for these two types of bed configurations. All proposed models are validated using existing experimental data for the various bed configurations in open-channel flows and satisfactory results have been obtained. These present models are also compared with empirical models from the literature and they are found to be more effective in representing both types of bed-roughness configurations. The effects of bed configuration on the streamlines of settling velocity are also investigated. Results show that laterally-skewed secondary cells (which occurs due to unequal smooth and rough bed strips), have significant effects on the closed ω-streamlines in terms of shape and location of the centre of these streamlines. More precisely, it is found that the area of the downflow zone proportionally increases with the length of rough-bed strips.
|
2 |
Lid driven cavity flow using stencil-based numerical methodsJuujärvi, Hannes, Kinnunen, Isak January 2022 (has links)
In this report the regular finite differences method (FDM) and a least-squares radial basis function-generated finite differences method (RBF-FD-LS) is used to solve the two-dimensional incompressible Navier-Stokes equations for the lid driven cavity problem. The Navier-Stokes equations is solved using stream function-vorticity formulation. The purpose of the report is to compare FDM and RBF-FD-LS with respect to accuracy and computational cost. Both methods were implemented in MATLAB and the problem was solved for Reynolds numbers equal to 100, 400 and 1000. In the report we present the solutions obtained as well as the results from the comparison. The results are discussed and conclusions are drawn. We came to the conclusion that RBF-FD-LS is more accurate when the stepsize of the grids used is held constant, while RBF-FD-LS costs more than FDM for similar accuracy.
|
3 |
Dinâmica de vórtices em superfícies com aplicações ao problema de dois vórtices no toro plano / Vortex dynamics on surfaces with applications to the problem of two vortices in a flat torusHumberto Henrique de Barros Viglioni 15 May 2013 (has links)
Este trabalho apresenta uma dedução das equações para a dinâmica de vórtices em superfícies utilizando argumentos físicos e balanço de momento, obtendo o resultado já conhecido devido a Boatto/Koiller e Hally. Na primeira parte, elaboramos uma releitura da contribuição de diversos pesquisadores incluindo, além dos já citados, o trabalho de Marchioro e Pulvirenti sobre a propriedade de localização para a equação de Euler e também a importante contribuição de Flucher e Gustafsson no que diz respeito à determinação da função de Green e função de Robin hidrodinâmicas em domínios do plano. Na segunda parte revisamos o problema da dinâmica de um traçador passivo induzida por um vórtice no disco unitário e estendemos para o caso com vorticidade de fundo constante. Por fim, analisamos a dinâmica de dois vórtices no toro plano, a qual reduz-se ao estudo da dinâmica do centro de vorticidade com hamiltoniana dada pela função de Green. É feita uma descrição das bifurcações das curvas de níveis desta hamiltoniana com respeito a variações do parâmetro modular. Mostramos que o campo hamiltoniano em questão é preservado por biholomorfismos e, portanto, o espaço dos parâmetros pode ser reduzido ao espaço de Moduli do toro plano. Mudanças dentro de uma mesma classe de equivalência por biholomorfismos podem alterar apenas a classe de homotopia das curvas de nível. / In this thesis the equations for the motion of vortices on Riemannian surfaces is studied. Using conservation of momentum and physical arguments, the classical equations of Hally and Boatto/Koiller are recovered. Then the localization result for the Euler\'s equation with flat metric (Marchioro and Pulvirenti) and the determination of the Green\'s and Robin\'s functions on plane domains are revisited in the context of Riemannian surfaces. On a second part of the thesis two examples are analyzed. At first the dynamics of a passive tracer in the unit disk on the flat plane with constant background vorticity. At second the dynamics of two vortices on flat tori. This last system is integrable. The dynamics is determined by the level sets of the Green\'s function which depends on the modular parameter of the torus. The full bifurcation diagram of the system as a function of the module parameter is determined.
|
4 |
Dinâmica de vórtices em superfícies com aplicações ao problema de dois vórtices no toro plano / Vortex dynamics on surfaces with applications to the problem of two vortices in a flat torusViglioni, Humberto Henrique de Barros 15 May 2013 (has links)
Este trabalho apresenta uma dedução das equações para a dinâmica de vórtices em superfícies utilizando argumentos físicos e balanço de momento, obtendo o resultado já conhecido devido a Boatto/Koiller e Hally. Na primeira parte, elaboramos uma releitura da contribuição de diversos pesquisadores incluindo, além dos já citados, o trabalho de Marchioro e Pulvirenti sobre a propriedade de localização para a equação de Euler e também a importante contribuição de Flucher e Gustafsson no que diz respeito à determinação da função de Green e função de Robin hidrodinâmicas em domínios do plano. Na segunda parte revisamos o problema da dinâmica de um traçador passivo induzida por um vórtice no disco unitário e estendemos para o caso com vorticidade de fundo constante. Por fim, analisamos a dinâmica de dois vórtices no toro plano, a qual reduz-se ao estudo da dinâmica do centro de vorticidade com hamiltoniana dada pela função de Green. É feita uma descrição das bifurcações das curvas de níveis desta hamiltoniana com respeito a variações do parâmetro modular. Mostramos que o campo hamiltoniano em questão é preservado por biholomorfismos e, portanto, o espaço dos parâmetros pode ser reduzido ao espaço de Moduli do toro plano. Mudanças dentro de uma mesma classe de equivalência por biholomorfismos podem alterar apenas a classe de homotopia das curvas de nível. / In this thesis the equations for the motion of vortices on Riemannian surfaces is studied. Using conservation of momentum and physical arguments, the classical equations of Hally and Boatto/Koiller are recovered. Then the localization result for the Euler\'s equation with flat metric (Marchioro and Pulvirenti) and the determination of the Green\'s and Robin\'s functions on plane domains are revisited in the context of Riemannian surfaces. On a second part of the thesis two examples are analyzed. At first the dynamics of a passive tracer in the unit disk on the flat plane with constant background vorticity. At second the dynamics of two vortices on flat tori. This last system is integrable. The dynamics is determined by the level sets of the Green\'s function which depends on the modular parameter of the torus. The full bifurcation diagram of the system as a function of the module parameter is determined.
|
5 |
THREE INITIATIVES ADDRESSING MRI PROBLEMSFan, Mingdong 29 May 2020 (has links)
No description available.
|
Page generated in 0.0883 seconds