Spelling suggestions: "subject:"strikeslip fault"" "subject:"strikeslip vault""
11 |
Experimental Investigation of Gouges and Cataclasites, Alpine Fault, New ZealandBoulton, Carolyn Jeanne January 2013 (has links)
The upper 8-12 km of the Alpine Fault, South Island, New Zealand, accommodates relative Australia-Pacific plate boundary motion through coseismic slip accompanying large-magnitude earthquakes. Earthquakes occur due to frictional instabilities on faults, and their nucleation, propagation, and arrest is governed by tectonic forces and fault zone properties. A multi-disciplinary dataset is presented on the lithological, microstructural, mineralogical, geochemical, hydrological, and frictional properties of Alpine Fault rocks collected from natural fault exposures and from Deep Fault Drilling Project (DFDP-1) drillcore. Results quantify and describe the physical and chemical processes that affect seismicity and slip accommodation.
Oblique dextral motion on the central Alpine Fault in the last 5-8 Myr has exhumed garnet-oligoclase facies mylonitic fault rocks from depths of up to 35 km. During the last phase of exhumation, brittle deformation of these mylonites, accompanied by fluid infiltration, has resulted in complex mineralogical and lithological variations in the fault rocks. Petrophysical, geochemical, and lithological data reveal that the fault comprises a central alteration zone of protocataclasites, foliated and nonfoliated cataclasites, and fault gouges bounded by a damage zone containing fractured ultramylonites and mylonites. Mineralogical results suggest that at least two stages of chemical alteration have occurred. At, or near, the brittle-to-ductile transition (c. >320 °C), metasomatic alteration reactions resulted in plagioclase and feldspar replacement by muscovite and sausserite, and biotite (phlogopite), hornblende (actinolite) and/or epidote replacement by chlorite (clinochlore). At lower temperatures (c. >120°C), primary minerals were altered to kaolinite, smectite and pyrite, or kaolinite, smectite, Fe-hydroxide (goethite) and carbonate, depending on redox conditions. Ultramylonites, nonfoliated and foliated cataclasites, and gouges in the hanging wall and footwall contain the high-temperature phyllosilicates chlorite and white mica (muscovite/illite). Brown principal slip zone (PSZ) gouges contain the low-temperature phyllosilicates kaolinite and smecite, and goethite and carbonate cements.
The frictional and hydrological properties of saturated intact samples of central Alpine Fault surface-outcrop gouges and cataclasites were investigated in room temperature experiments conducted at 30-33 MPa effective normal stress (σn') using a double-direct shear configuration and controlled pore fluid pressure in a triaxial pressure vessel. Surface-outcrop samples from Gaunt Creek, location of DFDP-1, displayed, with increasing distance (up to 50 cm) from the contact with footwall fluvioglacial gravels: (1) an increase in fault normal permeability (k = 7.45 x 10⁻²⁰ m² to k = 1.15 x 10⁻¹⁶ m²), (2) a transition from frictionally weak (μ=0.44) fault gouge to frictionally strong (μ=0.50’0.55) cataclasite, (3) a change in friction rate dependence (a–b) from solely velocity strengthening to velocity strengthening and weakening, and (4) an increase in the rate of frictional healing. The frictional and hydrological properties of saturated intact samples of southern Alpine Fault surface-outcrop gouges were also investigated in room temperature double-direct shear experiments conducted at σn'= 6-31 MPa. Three complete cross-sections logged from outcrops of the southern Alpine Fault at Martyr River, McKenzie Creek, and Hokuri Creek show that dextral-normal slip is localized to a single 1-12 m-thick fault core comprising impermeable (k=10⁻²⁰ to 10⁻²² m²), frictionally weak (μ=0.12 – 0.37), velocity-strengthening, illite-chlorite and trioctahedral smectite (saponite)-chlorite-lizardite fault gouges. In low velocity room temperature experiments, Alpine Fault gouges tested have behaviours associated with aseismic creep.
In a triaxial compression apparatus, the frictional properties of PSZ gouge samples recovered from DFDP-1 drillcore at 90 and 128 m depths were tested at temperatures up to T=350°C and effective normal stresses up to σn'=156 MPa to constrain the fault's strength and stability under conditions representative of the seismogenic crust. The chlorite/white mica-bearing DFDP-1A blue gouge is frictionally strong (μ=0.61–0.76) across a range of experimental conditions (T=70–350°C, σn'=31.2–156 MPa) and undergoes a stability transition from velocity strengthening to velocity weakening as T increases past 210°C, σn'=31.2–156 MPa. The coefficient of friction of smecite-bearing DFDP-1B brown gouge increases from μ=0.49 to μ=0.74 with increasing temperature and pressure (T=70–210°C, σn'=31.2–93.6 MPa) and it undergoes a transition from velocity strengthening to velocity weakening as T increases past 140°C, σn'=62.4 MPa. In low velocity hydrothermal experiments, Alpine Fault gouges have behaviours associated with potentially unstable, seismic slip at temperatures ≥140°C, depending on mineralogy.
High-velocity (v=1 m/s), low normal stress (σn=1 MPa) friction experiments conducted on a rotary shear apparatus showed that the peak coefficient of friction (μp) of Alpine Fault cataclasites and fault gouges was consistently high (mean μp=0.69±0.06) in room-dry experiments. Variations in fault rock mineralogy and permeability were more apparent in experiments conducted with pore fluid, wherein the peak coefficient of friction of the cataclasites (mean μp=0.64±0.04) was higher than the fault gouges (mean μp=0.24±0.16). All fault rocks exhibited very low steady state coefficients of friction (μss) (room-dry mean μss=0.18±0.04; saturated mean μss=0.10±0.04). Three high-velocity experiments conducted on saturated smectite-bearing principal slip zone (PSZ) fault gouges had the lowest peak friction coefficients (μp=0.13-0.18), lowest steady state friction coefficients (μss=0.02-0.10), and lowest breakdown work values (WB=0.07-0.11 MJ/m²) of all the experiments performed.
Lower strength (μ < c. 0.62) velocity-strengthening fault rocks comprising a realistically heterogeneous fault plane represent barrier(s) to rupture propagation. A wide range of gouges and cataclasites exhibited very low steady state friction coefficients in high-velocity friction experiments. However, earthquake rupture nucleation in frictionally strong (μ ≥ c. 0.62), velocity-weakening material provides the acceleration necessary to overcome the low-velocity rupture propagation barrier(s) posed by velocity-strengthening gouges and cataclasites. Mohr-Coulomb theory stipulates that sufficient shear stress must be resolved on the Alpine Fault, or pore fluid pressure must be sufficiently high, for earthquakes to nucleate in strong, unstable fault materials. A three-dimensional stress analysis was conducted using the average orientation of the central and southern Alpine Fault, the experimentally determined coefficient of friction of velocity-weakening DFDP-1A blue gouge, and the seismologically determined stress tensor and stress shape ratio(s). Results reveal that for a coefficient of friction of μ ≥ c. 0.62, the Alpine Fault is unfavourably oriented to severely misoriented for frictional slip.
|
12 |
Remote Sensing Study Of Surgu Fault ZoneKoc, Ayten 01 September 2005 (has links) (PDF)
The geometry, deformation mechanism and kinematics of the Sü / rgü / Fault Zone is investigated by using remotely sensed data including Landsat TM and ASTER imagery combined with SRTM, and stereo-aerial photographs. They are used to extract information related to regional lineaments and tectono-morphological characteristics of the SFZ. Various image processing and enhancement techniques including contrast enhancement, PCA, DS and color composites are applied on the imagery and three different approaches including manual, semi automatic and automatic lineament extraction methods are followed. Then the lineaments obtained from ASTER and Landsat imagery using manual and automatic methods are overlaid to produce a final lineaments map.
The results have indicated that, the total number and length of the lineaments obtained from automatic is more than other methods while the percentages of overlapping lineaments for the manual method is more than the automatic method which indicate that the lineaments from automatic method does not discriminate man made features which result more lineaments and less overlapping ratio with respect to final map.
It is revealed from the detail analysis that, the SFZ displays characteristic deformation patterns of strike-slip faults, such as pressure ridges, linear fault controlled valleys, deflected stream courses, rotated blocks and juxtaposition of stratigraphical horizons in macroscopic scale. In addition to these, kinematic analyses carried out using fault slip data indicated that the Sü / rgü / Fault Zone is dextral strike-slip fault zone with a reverse component of slip and cumulative displacement along the fault is more than 2 km.
|
13 |
Seismic structure of the Arava Fault, Dead Sea TransformMaercklin, Nils January 2004 (has links)
Ein transversales Störungssystem im Nahen Osten, die Dead Sea Transform (DST), trennt die Arabische Platte von der Sinai-Mikroplatte und erstreckt sich von Süden nach Norden vom Extensionsgebiet im Roten Meer über das Tote Meer bis zur Taurus-Zagros Kollisionszone. Die sinistrale DST bildete sich im Miozän vor etwa 17 Ma und steht mit dem Aufbrechen des Afro-Arabischen Kontinents in Verbindung. Das Untersuchungsgebiet liegt im Arava Tal zwischen Totem und Rotem Meer, mittig über der Arava Störung (Arava Fault, AF), die hier den Hauptast der DST bildet.<br />
<br />
Eine Reihe seismischer Experimente, aufgebaut aus künstlichen Quellen, linearen Profilen über die Störung und entsprechend entworfenen Empfänger-Arrays, zeigt die Untergrundstruktur in der Umgebung der AF und der Verwerfungszone selbst bis in eine Tiefe von 3-4 km. Ein tomographisch bestimmtes Modell der seismischen Geschwindigkeiten von P-Wellen zeigt einen starken Kontrast nahe der AF mit niedrigeren Geschwindigkeiten auf der westlichen Seite als im Osten. Scherwellen lokaler Erdbeben liefern ein mittleres P-zu-S Geschwindigkeitsverhältnis und es gibt Anzeichen für Änderungen über die Störung hinweg. Hoch aufgelöste tomographische Geschwindigkeitsmodelle bestätigen der Verlauf der AF und stimmen gut mit der Oberflächengeologie überein. <br />
<br />
Modelle des elektrischen Widerstands aus magnetotellurischen Messungen im selben Gebiet zeigen eine leitfähige Schicht westlich der AF, schlecht leitendes Material östlich davon und einen starken Kontrast nahe der AF, die den Fluss von Fluiden von einer Seite zur anderen zu verhindern scheint. Die Korrelation seismischer Geschwindigkeiten und elektrischer Widerstände erlaubt eine Charakterisierung verschiedener Lithologien im Untergrund aus deren physikalischen Eigenschaften. Die westliche Seite lässt sich durch eine geschichtete Struktur beschreiben, wogegen die östliche Seite eher einheitlich erscheint. Die senkrechte Grenze zwischen den westlichen Einheiten und der östlichen scheint gegenüber der Oberflächenausprägung der AF nach Osten verschoben zu sein.<br />
<br />
Eine Modellierung von seismischen Reflexionen an einer Störung deutet an, dass die Grenze zwischen niedrigen und hohen Geschwindigkeiten eher scharf ist, sich aber durch eine raue Oberfläche auf der Längenskala einiger hundert Meter auszeichnen kann, was die Streuung seismischer Wellen begünstigte. Das verwendete Abbildungsverfahren (Migrationsverfahren) für seismische Streukörper basiert auf Array Beamforming und der Kohärenzanalyse P-zu-P gestreuter seismischer Phasen. Eine sorgfältige Bestimmung der Auflösung sichert zuverlässige Abbildungsergebnisse.<br />
<br />
Die niedrigen Geschwindigkeiten im Westen entsprechen der jungen sedimentären Füllung im Arava Tal, und die hohen Geschwindigkeiten stehen mit den dortigen präkambrischen Magmatiten in Verbindung. Eine 7 km lange Zone seismischer Streuung (Reflektor) ist gegenüber der an der Oberfläche sichtbaren AF um 1 km nach Osten verschoben und lässt sich im Tiefenbereich von 1 km bis 4 km abbilden. Dieser Reflektor markiert die Grenze zwischen zwei lithologischen Blöcken, die vermutlich wegen des horizontalen Versatzes entlang der DST nebeneinander zu liegen kamen. Diese Interpretation als lithologische Grenze wird durch die gemeinsame Auswertung der seismischen und magnetotellurischen Modelle gestützt. Die Grenze ist möglicherweise ein Ast der AF, der versetzt gegenüber des heutigen, aktiven Asts verläuft. Der Gesamtversatz der DST könnte räumlich und zeitlich auf diese beiden Äste und möglicherweise auch auf andere Störungen in dem Gebiet verteilt sein. / The Dead Sea Transform (DST) is a prominent shear zone in the Middle East. It separates the Arabian plate from the Sinai microplate and stretches from the Red Sea rift in the south via the Dead Sea to the Taurus-Zagros collision zone in the north. Formed in the Miocene about 17 Ma ago and related to the breakup of the Afro-Arabian continent, the DST accommodates the left-lateral movement between the two plates. The study area is located in the Arava Valley between the Dead Sea and the Red Sea, centered across the Arava Fault (AF), which constitutes the major branch of the transform in this region.<br />
<br />
A set of seismic experiments comprising controlled sources, linear profiles across the fault, and specifically designed receiver arrays reveals the subsurface structure in the vicinity of the AF and of the fault zone itself down to about 3-4 km depth. A tomographically determined seismic P velocity model shows a pronounced velocity contrast near the fault with lower velocities on the western side than east of it. Additionally, S waves from local earthquakes provide an average P-to-S velocity ratio in the study area, and there are indications for a variations across the fault. High-resolution tomographic velocity sections and seismic reflection profiles confirm the surface trace of the AF, and observed features correlate well with fault-related geological observations.<br />
<br />
Coincident electrical resistivity sections from magnetotelluric measurements across the AF show a conductive layer west of the fault, resistive regions east of it, and a marked contrast near the trace of the AF, which seems to act as an impermeable barrier for fluid flow. The correlation of seismic velocities and electrical resistivities lead to a characterisation of subsurface lithologies from their physical properties. Whereas the western side of the fault is characterised by a layered structure, the eastern side is rather uniform. The vertical boundary between the western and the eastern units seems to be offset to the east of the AF surface trace.<br />
<br />
A modelling of fault-zone reflected waves indicates that the boundary between low and high velocities is possibly rather sharp but exhibits a rough surface on the length scale a few hundreds of metres. This gives rise to scattering of seismic waves at this boundary. The imaging (migration) method used is based on array beamforming and coherency analysis of P-to-P scattered seismic phases. Careful assessment of the resolution ensures reliable imaging results.<br />
<br />
The western low velocities correspond to the young sedimentary fill in the Arava Valley, and the high velocities in the east reflect mainly Precambrian igneous rocks. A 7 km long subvertical scattering zone reflector is offset about 1 km east of the AF surface trace and can be imaged from 1 km to about 4 km depth. The reflector marks the boundary between two lithological blocks juxtaposed most probably by displacement along the DST. This interpretation as a lithological boundary is supported by the combined seismic and magnetotelluric analysis. The boundary may be a strand of the AF, which is offset from the current, recently active surface trace. The total slip of the DST may be distributed spatially and in time over these two strands and possibly other faults in the area.
|
14 |
Combined structural and magnetotelluric investigation across the West Fault Zone in northern ChileHoffmann-Rothe, Arne January 2002 (has links)
Untersuchungen zur internen Architektur von großen Störungszonen beschränken sich üblicherweise auf die, an der Erdoberfläche aufgeschlossene, störungsbezogene Deformation. Eine Methode, die es ermöglicht, Informationen über die Tiefenfortsetzung einer Störung zu erhalten, ist die Abbildung der elektrischen Leitfähigkeit des Untergrundes.<br />
<br />
Die vorliegende Arbeit beschäftigt sich mit der kombinierten strukturgeologischen und magnetotellurischen Untersuchung eines Segmentes der 'West Fault'-Störung in den nordchilenischen Anden. Die West Fault ist ein Abschnitt des über 2000 km langen Präkordilleren-Störungssystem, welches im Zusammenhang mit der Subduktion vor der südamerikanischen Westküste entstanden ist. Die Aktivität dieses Störungssystems reichte vom Eozän bis in das Quartär. Der Verlauf der West Fault ist im Untersuchungsgebiet (22°04'S, 68°53'W) an der Oberfläche klar definiert und weist über viele zehner Kilometer eine konstante Streichrichtung auf. Die Aufschlussbedingungen und die Morphologie des Arbeitsgebietes sind ideal für kombinierte Untersuchungen der störungsbezogenen Deformation und der elektrischen Leitfähigkeit des Untergrundes mit Hilfe magnetotellurischer Experimente (MT) und der erdmagnetischen Tiefensondierung (GDS). Ziel der Untersuchungen war es, eine mögliche Korrelation der beiden Meßmethoden herauszuarbeiten, und die interne Störungsarchitektur der West Fault umfassend zu beschreiben.<br />
<br />
Die Interpretation von Sprödbruch-Strukturen (kleinmaßstäbliche Störungen sowie Störungsflächen mit/ohne Bewegungslineationen) im Untersuchungsgebiet weist auf überwiegend seitenverschiebende Deformation entlang von subvertikal orientierten Scherflächen hin. Dextrale und sinistrale Bewegungsrichtungen können innerhalb der Störungszone bestätigt werden, was auf Reaktivierungen des Störungssystems schliessen läßt. Die jüngsten Deformationen im Arbeitsgebiet haben dehnenden Charakter, wobei die kinematische Analyse eine unterschiedliche Orientierung der Extensionsrichtung beiderseits der Störung andeutet. Die Bruchflächendichte nimmt mit Annäherung an die Störung zu und zeichnet einen etwa 1000 m breiten Bereich erhöhter Deformationsintensität um die Störungsspur aus (damage zone). Im Zentrum dieser Zone weist das Gestein eine intensive Alteration und Brekzierung auf, die sich über eine Breite von etwa 400 m erstreckt. Kleine Störungen und Scherflächen in diesem zentralen Abschnitt der Störung fallen überwiegend steil nach Osten ein (70-80°).<br />
<br />
Innerhalb desselben Arbeitsgebietes wurde ein 4 km langes MT/GDS Profil vermessen, welches senkrecht zum Streichen der West Fault verläuft. Für die zentralen 2 km dieses Hauptprofils beträgt der Abstand der Meßstationen jeweils 100 m. Ein weiteres Profil, bestehend aus 9 Stationen mit einem Abstand von 300 m zueinander, quert die Störung einige Kilometer entfernt vom eigentlichen Arbeitsgebiet. Die Aufzeichnung der Daten erfolgte mit vier S.P.A.M MkIII Apparaturen in einem Frequenzbereich von 1000 Hz bis 0.001 Hz.<br />
<br />
In den GDS Daten beider Profile ist die Störung für Frequenzen >1 Hz deutlich abgebildet: Die Induktionspfeile kennzeichnen eine mehrere hundert Meter breite Zone erhöhter Leitfähigkeit, welche sich entlang der West Fault erstreckt. Die Dimensionalitätsanalyse der MT Daten rechtfertigt die Anpassung der gemessenen Daten mit einem zwei-dimensionalen Modell für einen Frequenzbereich von 1000 Hz bis 0.1 Hz. In diesem Frequenzbereich, der eine Auflösung der Leitfähigkeitsstruktur bis mindestens 5 km Tiefe ermöglicht, läßt sich eine regionale geoelektrische Streichrichtung parallel zum Verlauf der West Fault nachweisen.<br />
<br />
Die Modellierung der MT Daten beruht auf einem Inversionsalgorithmus von Mackie et al. (1997). Leitfähigkeitsanomalien, die sich aus der Inversions-Modellierung ergeben, werden anhand von empirischen Sensitivitätsstudien auf ihre Robustheit überprüft. Dabei werden die Eigenschaften (Geometrie, Leitfähigkeit) der Strukturen systematisch variiert und sowohl Vorwärts- als auch Inversionsrechnungen der modifizierten Modelle durchgeführt. Die jeweiligen Modellergebnisse werden auf ihre Konsistenz mit dem Ausgangsdatensatz überprüft. Entlang beider MT Profile wird ein guter elektrischer Leiter im zentralen Abschnitt der West Fault aufgelöst, wobei die Bereiche erhöhter Leitfähigkeit östlich der Störungsspur liegen. Für das dicht vermessene MT Profil ergibt sich eine Breite des Störungsleiters von etwa 300 m sowie ein steiles Einfallen der Anomalie nach Osten (70°). Der Störungsleiter reicht bis in eine Tiefe von mindestens 1100 m, während die Modellierungsstudien auf eine maximale Tiefenerstreckung <2000 m hinweisen. Das Profil zeigt weitere leitfähige Anomalien, deren Geometrie aber weniger genau aufgelöst ist.<br />
<br />
Die Störungsleiter der beiden MT Profile stimmen in ihrer Position mit der Alterationszone überein. Im zentralen Bereich des Hauptprofils korreliert darüber hinaus das Einfallen der Sprödbruch-Strukturen und der Leitfähigkeitsanomalie. Dies weist darauf hin, daß die Erhöhung der Leitfähigkeit im Zusammenhang mit einem Netzwerk von Bruchstrukturen steht, welches mögliche Wegsamkeiten für Fluide bietet. Der miteinander in Verbindung stehende Gesteins-Porenraum, der benötigt wird, um die gemessene Erhöhung der Leitfähigkeit durch Fluide im Gestein zu erklären, kann anhand der Salinität einiger Grundwasserproben abgeschätzt werden (Archies Gesetz). Wasserproben aus größerer Tiefe, weisen aufgrund intensiverer Fluid-Gesteins-Wechselwirkung eine höhere Salinität, und damit eine verbesserte Leitfähigkeit, auf. Für eine Probe aus einer Tiefe von 200 m ergibt sich demnach eine benötigte Porosität im Bereich von 0.8% - 4%. Dies legt nahe, daß Wässer, die von der Oberfläche in die Bruchzone der Störung eindringen, ausreichen, um die beobachtete Leitfähigkeitserhöhung zu erklären. Diese Deutung wird von der geochemischen Signatur von Gesteinsproben aus dem Alterationsbereich bestätigt, wonach die Alteration in einem Regime niedriger Temperatur (<95°C) stattfand. Der Einfluß von aufsteigenden Tiefenwässern wurde hier nicht nachgewiesen. Die geringe Tiefenerstreckung des Störungsleiters geht wahrscheinlich auf Verheilungs- und Zementationsprozesse der Bruchstrukturen zurück, die aufgrund der Lösung und Fällung von Mineralen in größerer Tiefe, und damit bei erhöhter Temperatur, aktiv sind.<br />
<br />
Der Vergleich der Untersuchungsergebnisse der zur Zeit seismisch inaktiven West Fault mit veröffentlichten Studien zur elektrischen Leitfähigkeitsstruktur der aktiven San Andreas Störung, deutet darauf hin, daß die Tiefenerstreckung und die Leitfähigkeit von Störungsleitern eine Funktion der Störungsaktivität ist. Befindet sich eine Störung in einem Stadium der Deformation, so bleibt das Bruchnetzwerk für Fluide permeabel und verhindert die Versiegelung desselben. / The characterisation of the internal architecture of large-scale fault zones is usually restricted to the outcrop-based investigation of fault-related structural damage on the Earth's surface. A method to obtain information on the downward continuation of a fault is to image the subsurface electrical conductivity structure.<br />
<br />
This work deals with such a combined investigation of a segment of the West Fault, which itself is a part of the more than 2000 km long trench-linked Precordilleran Fault System in the northern Chilean Andes. Activity on the fault system lasted from Eocene to Quaternary times. In the working area (22°04'S, 68°53'W), the West Fault exhibits a clearly defined surface trace with a constant strike over many tens of kilometers. Outcrop condition and morphology of the study area allow ideally for a combination of structural geology investigation and magnetotelluric (MT) / geomagnetic depth sounding (GDS) experiments. The aim was to achieve an understanding of the correlation of the two methods and to obtain a comprehensive view of the West Fault's internal architecture.<br />
<br />
Fault-related brittle damage elements (minor faults and slip-surfaces with or without striation) record prevalent strike-slip deformation on subvertically oriented shear planes. Dextral and sinistral slip events occurred within the fault zone and indicate reactivation of the fault system. Youngest deformation increments mapped in the working area are extensional and the findings suggest a different orientation of the extension axes on either side of the fault. Damage element density increases with approach to the fault trace and marks an approximately 1000 m wide damage zone around the fault. A region of profound alteration and comminution of rocks, about 400 m wide, is centered in the damage zone. Damage elements in this central part are predominantly dipping steeply towards the east (70-80°).<br />
<br />
Within the same study area, the electrical conductivity image of the subsurface was measured along a 4 km long MT/GDS profile. This main profile trends perpendicular to the West Fault trace. The MT stations of the central 2 km were 100 m apart from each other. A second profile with 300 m site spacing and 9 recording sites crosses the fault a few kilometers away from the main study area. Data were recorded in the frequency range from 1000 Hz to 0.001 Hz with four real time instruments S.P.A.M. MkIII.<br />
<br />
The GDS data reveal the fault zone for both profiles at frequencies above 1 Hz. Induction arrows indicate a zone of enhanced conductivity several hundred meters wide, that aligns along the WF strike and lies mainly on the eastern side of the surface trace. A dimensionality analysis of the MT data justifies a two dimensional model approximation of the data for the frequency range from 1000 Hz to 0.1 Hz. For this frequency range a regional geoelectric strike parallel to the West Fault trace could be recovered. The data subset allows for a resolution of the conductivity structure of the uppermost crust down to at least 5 km.<br />
<br />
Modelling of the MT data is based on an inversion algorithm developed by Mackie et al. (1997). The features of the resulting resistivity models are tested for their robustness using empirical sensitivity studies. This involves variation of the properties (geometry, conductivity) of the anomalies, the subsequent calculation of forward or constrained inversion models and check for consistency of the obtained model results with the data. A fault zone conductor is resolved on both MT profiles. The zones of enhanced conductivity are located to the east of the West Fault surface trace. On the dense MT profile, the conductive zone is confined to a width of about 300 m and the anomaly exhibits a steep dip towards the east (about 70°). Modelling implies that the conductivity increase reaches to a depth of at least 1100 m and indicates a depth extent of less than 2000 m. Further conductive features are imaged but their geometry is less well constrained.<br />
<br />
The fault zone conductors of both MT profiles coincide in position with the alteration zone. For the dense profile, the dip of the conductive anomaly and the dip of the damage elements of the central part of the fault zone correlate. This suggests that the electrical conductivity enhancement is causally related to a mesh of minor faults and fractures, which is a likely pathway for fluids. The interconnected rock-porosity that is necessary to explain the observed conductivity enhancement by means of fluids is estimated on the basis of the salinity of several ground water samples (Archie's Law). The deeper the source of the water sample, the more saline it is due to longer exposure to fluid-rock interaction and the lower is the fluid's resistivity. A rock porosity in the range of 0.8% - 4% would be required at a depth of 200 m. That indicates that fluids penetrating the damaged fault zone from close to the surface are sufficient to explain the conductivity anomalies. This is as well supported by the preserved geochemical signature of rock samples in the alteration zone. Late stage alteration processes were active in a low temperature regime (<95°C) and the involvement of ascending brines from greater depth is not indicated. The limited depth extent of the fault zone conductors is a likely result of sealing and cementation of the fault fracture mesh due to dissolution and precipitation of minerals at greater depth and increased temperature.<br />
<br />
Comparison of the results of the apparently inactive West Fault with published studies on the electrical conductivity structure of the currently active San Andreas Fault, suggests that the depth extent and conductivity of the fault zone conductor may be correlated to fault activity. Ongoing deformation will keep the fault/fracture mesh permeable for fluids and impede cementation and sealing of fluid pathways.
|
15 |
Structural observations at the southern Dead Sea Transform from seismic reflection data and ASTER satellite images / Structural observations at the southern Dead Sea Transform from seismic reflection data and ASTER satellite imagesKesten, Dagmar January 2004 (has links)
Die folgende Arbeit ist Teil des multidisziplinären Projektes DESERT (DEad SEa Rift Transect), welches seit dem Jahr 2000 im Nahen Osten durchgeführt wird. Dabei geht es primär um die Struktur der südlichen Dead Sea Transform (DST; Tote-Meer-Transformstörung), Plattengrenze zwischen Afrika (Sinai) und der Arabischen Mikroplatte. Seit dem Miozän beträgt der sinistrale Versatz an dieser bedeutenden aktiven Blattverschiebung mehr als 100 km. Das steilwinkelseismische (NVR) Experiment von DESERT querte die DST im Arava Tal zwischen Rotem Meer und Totem Meer, wo die Hauptstörung auch Arava Fault genannt wird. Das 100 km lange Profil erstreckte sich von Sede Boqer/Israel im Nordwesten nach Ma'an/Jordanien im Südosten und fällt mit dem zentralen Teil einer weitwinkelseismischen Profillinie zusammen.
<br><br>
Steilwinkelseismische Messungen stellen bei der Bestimmung der Krustenstruktur bis zur Krusten/Mantel-Grenze ein wichtiges Instrument dar. Obwohl es kaum möglich ist, steilstehende Störungszonen direkt abzubilden, geben abrupte Veränderungen des Reflektivitätsmuster oder plötzlich endende Reflektoren indirekte Hinweise auf Transformbewegung. Da bis zum DESERT Experiment keine anderen reflexionsseismischen Messungen über die DST ausgeführt worden waren, waren wichtige Aspekte dieser Transform-Plattengrenze und der damit verbundenen Krustenstruktur nicht bekannt. Mit dem Projekt sollte deshalb untersucht werden, wie sich die DST sowohl in der oberen als auch in der unteren Kruste manifestiert. Zu den Fragestellungen gehörte unter anderem, ob sich die DST bis in den Mantel fortsetzt und ob ein Versatz der Krusten/Mantel-Grenze beobachtet werden kann. So ein Versatz ist von anderen großen Transformstörungen bekannt.
<br><br>
In der vorliegenden Arbeit werden zunächst die Methode der Steilwinkelseismik und die Datenverarbeitung kurz erläutert, bevor die Daten geologisch interpretiert werden. Bei der Interpetation werden die Ergebnisse anderer relevanter Studien berücksichtigt.
Geologische Geländearbeiten im Gebiet des NVR Profiles ergaben, dass die Arava Fault zum Teil charakterisiert ist durch niedrige Steilstufen in den neogenen Sedimenten, durch kleine Druckrücken oder Rhomb-Gräben. Ein typischer Aufbau der Störungszone mit einem Störungskern, einer störungsbezogenen Deformationszone und einem undeformierten Ausgangsgestein, wie er von anderen großen Störungszonen beschrieben worden ist, konnte nicht gefunden werden. Deshalb wurden zur Ergänzung der Reflexionsseismik, welche vor allem die tieferen Krustenstrukturen abbildet, ASTER (Advanced Spacebourne Thermal Emission and Reflection Radiometer) Satellitendaten herangezogen, um oberflächennahe Deformation und neotektonische Aktivität zu bestimmen. / Following work is embedded in the multidisciplinary study DESERT (DEad SEa Rift Transect) that has been carried out in the Middle East since the beginning of the year 2000. It focuses on the structure of the southern Dead Sea Transform (DST), the transform plate boundary between Africa (Sinai) and the Arabian microplate. The left-lateral displacement along this major active strike-slip fault amounts to more than 100 km since Miocene times.
The DESERT near-vertical seismic reflection (NVR) experiment crossed the DST in the Arava Valley between Red Sea and Dead Sea, where its main fault is called Arava Fault. The 100 km long profile extends in a NW—SE direction from Sede Boqer/Israel to Ma'an/Jordan and coincides with the central part of a wide-angle seismic refraction/reflection line.
<br><br>
Near-vertical seismic reflection studies are powerful tools to study the crustal architecture down to the crust/mantle boundary. Although they cannot directly image steeply dipping fault zones, they can give indirect evidence for transform motion by offset reflectors or an abrupt change in reflectivity pattern. Since no seismic reflection profile had crossed the DST before DESERT, important aspects of this transform plate boundary and related crustal structures were not known. Thus this study aimed to resolve the DST's manifestation in both the upper and the lower crust. It was to show, whether the DST penetrates into the mantle and whether it is associated with an offset of the crust/mantle boundary, which is observed at other large strike-slip zones.
<br><br>
In this work a short description of the seismic reflection method and the various processing steps is followed by a geological interpretation of the seismic data, taking into account relevant information from other studies.
Geological investigations in the area of the NVR profile showed, that the Arava Fault can partly be recognized in the field by small scarps in the Neogene sediments, small pressure ridges or rhomb-shaped grabens. A typical fault zone architecture with a fault gauge, fault-related damage zone, and undeformed host rock, that has been reported from other large fault zones, could not be found. Therefore, as a complementary part to the NVR experiment, which was designed to resolve deeper crustal structures, ASTER (Advanced Spacebourne Thermal Emission and Reflection Radiometer) satellite images were used to analyze surface deformation and determine neotectonic activity.
|
16 |
Geology of the Phil Pico Mountain Quadrangle, Daggett County, Utah, and Sweetwater County, WyomingAnderson, Alvin D. 25 April 2008 (has links) (PDF)
Geologic mapping in the Phil Pico Mountain quadrangle and analysis of the Carter Oil Company Carson Peak Unit 1 well have provided additional constraints on the erosional and uplift history of this section of the north flank of the Uinta Mountains. Phil Pico Mountain is largely composed of the conglomeratic facies of the early Eocene Wasatch and middle to late Eocene Bridger Formations. These formations are separated by the Henrys Fork fault which has thrust Wasatch Formation next to Bridger Formation. The Wasatch Formation is clearly synorogenic and contains an unroofing succession from the adjacent Uinta Mountains. On Phil Pico Mountain, the Wasatch Formation contains clasts eroded sequentially from the Permian Park City Formation, Permian Pennsylvanian Weber Sandstone, Pennsylvanian Morgan Formation, and the Pennsylvanian Round Valley and Mississippian Madison Limestones. Renewed uplift in the middle and late Eocene led to the erosion of Wasatch Formation and its redeposition as Bridger Formation on the down-thrown footwall of the Henrys Fork fault. Field observations and analysis of the cuttings and lithology log from Carson Peak Unit 1 well suggest that initial uplift along the Henrys Fork Fault occurred in the late early or early middle Eocene with the most active periods of uplift in the middle and late Eocene (Figure 8, Figure 24, Appendix 1). The approximate post-Paleocene throw of the Henrys Fork fault at Phil Pico Mountain is 2070 m (6800 ft). The Carson Peak Unit 1 well also reveals that just north of the Henrys Fork fault at Phil Pico Mountain the Bridger Formation (middle to late Eocene) is 520 m (1710 ft) thick; an additional 460 m (1500 ft) of Bridger Formation lies above the well on Phil Pico Mountain. Beneath the Bridger Formation are 400 m (1180 ft) of Green River Formation (early to middle Eocene), 1520 m (5010 ft) of Wasatch Formation (early Eocene), and 850 m (2800 ft) of the Fort Union Formation (Paleocene). Stratigraphic data from three sections located east to west across the Phil Pico Mountain quadrangle show that the Protero-zoic Red Pine Shale has substantially more sandstone and less shale in the eastern section of the quadrangle. Field observations suggest that the Red Pine Shale undergoes a facies change across the quadrangle. However, due to the lack of continuous stratigraphic exposures, the cause of this change is not known.
|
Page generated in 0.0335 seconds