• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Exhumace střednokorových hornin mechanismem křehce-duktilního odstřešení na příkladu veporského krystalinika v Západních Karpatech / Exhumation of mid-crustal rocks by a brittle-ductile unroofing mechanism, an example from the Veporic crystalline complex in the West Carpathians

Bukovská, Zita January 2010 (has links)
Study of the structural and metamorphic record of the eastern part of contact zone within Vepor and Gemer units in Central West Carpathians has interpreted the burial and exhumation in the evolution of alpine orogeny. The studied area is built by granitoid rocks of Vepor basement and metapelites of cover sequences both Vepor and Gemer units. Three structural fabrics have been identified in the area, which are correlated with so far described deformation stages. Higher metamorphosed rocks with presence of two generation garnets were found out within lower metamorphosed metapelites of cover sequences. From the garnet - biotite thermometry the metamorphic conditions for the rims were established to 550-580řC. Whereas muscovite and in some case chlorite, are the only metamorphic phases in neighbouring cover rocks. Three generations of white micas are documented within structural fabrics. The oldest muscovites, magmatic in origin (Ms1), younger phengites (Phg) present in fabrics S1 and youngest muscovites (Ms2) present in fabric S2. The study of quartz microstructures distinguished aggregates and from aggregates coming band microstructures. These are mostly found in deformed granitoids, sometimes also in cover quartzites and can have sigma-shape geometry. The aggregate microstructure, representing S1...
2

Investigating the effect of high-angle normal faulting on unroofing histories of the Santa Catalina-Rincon and Harcuvar metamorphic core complexes, using apatite fission-track and apatite and zircon (U-Th)/He thermochronometry

Sanguinito, Sean Michael 17 February 2014 (has links)
The formation and evolution of metamorphic core complexes has been widely studied using low temperature thermochronometry methods. Interpretation of these data has historically occurred through the lens of the traditional slip rate method which provides a singular rate that unroofing occurs at temporally as well as spatially, and assumes unroofing is dominated by motion on a single master detachment fault. Recently, several new studies have utilized (U-Th)/He ages with a higher spatial density and greater nominal precision to suggest a late-stage rapid increase in the rate of unroofing. This analysis is based on the traditional slip rate method interpretation of broad regions of core complexes that display little to no change in age along the slip direction. An alternative interpretation is presented that instead of a change in slip rate, there may have been a change in the style of unroofing, specifically caused by the transfer of displacement from low-angle detachment faulting to high-angle normal faults. Apatite fission-track (AFT), and apatite and zircon (U-Th)/He (AHe and ZHe) analyses were applied to samples from the Santa Catalina-Rincon (n=8 AHe, and n=9 ZHe) and Harcuvar (n=12 AFT, n=16 AHe, and n=17 ZHe) metamorphic core complexes in an attempt to resolve the possible thermal effects of high-angle normal faulting on core complex formation. Samples from the Harcuvars were taken along a transect parallel to slip direction with some samples specifically targeting high-angle normal fault locations. The AFT data collected here has the advantage of improved analysis and modeling techniques. Also, more than an order of magnitude more data were collected and analyzed than any previous studies within the Harcuvars. The AFT ages include a trend from ~22 Ma in the southwest to ~14 Ma in the northeast and provide a traditional slip rate of 7.1 mm/yr, similar to previous work. However, two major high-angle, detachment-parallel normal faults were identified, and hanging-wall samples are ~3 m.y. older than the footwalls, indicating high-angle normal faults rearranged the surface expression of the distribution of thermochronometer ages to some extent. AHe ages range from 8.1 Ma to 18.4 Ma but in general decrease with increasing distance in the slip direction. ZHe ages generally range between 13.6 Ma and 17.4 Ma. A series of unexpectedly young AFT ages (10-11 Ma), given by three complete samples and distinct population modes in others, suggest that some parts of the range underwent a later-stage unroofing event possibly caused by high-angle faulting. Confined fission-track length distributions were measured for Harcuvar samples and modeled using the modeling software HeFTy to infer thermal histories and calculate local cooling rates. These imply a component of steady cooling in some parts of the range, evidence of a different departure from a single-detachment dominated model. / text
3

Geology of the Phil Pico Mountain Quadrangle, Daggett County, Utah, and Sweetwater County, Wyoming

Anderson, Alvin D. 25 April 2008 (has links) (PDF)
Geologic mapping in the Phil Pico Mountain quadrangle and analysis of the Carter Oil Company Carson Peak Unit 1 well have provided additional constraints on the erosional and uplift history of this section of the north flank of the Uinta Mountains. Phil Pico Mountain is largely composed of the conglomeratic facies of the early Eocene Wasatch and middle to late Eocene Bridger Formations. These formations are separated by the Henrys Fork fault which has thrust Wasatch Formation next to Bridger Formation. The Wasatch Formation is clearly synorogenic and contains an unroofing succession from the adjacent Uinta Mountains. On Phil Pico Mountain, the Wasatch Formation contains clasts eroded sequentially from the Permian Park City Formation, Permian Pennsylvanian Weber Sandstone, Pennsylvanian Morgan Formation, and the Pennsylvanian Round Valley and Mississippian Madison Limestones. Renewed uplift in the middle and late Eocene led to the erosion of Wasatch Formation and its redeposition as Bridger Formation on the down-thrown footwall of the Henrys Fork fault. Field observations and analysis of the cuttings and lithology log from Carson Peak Unit 1 well suggest that initial uplift along the Henrys Fork Fault occurred in the late early or early middle Eocene with the most active periods of uplift in the middle and late Eocene (Figure 8, Figure 24, Appendix 1). The approximate post-Paleocene throw of the Henrys Fork fault at Phil Pico Mountain is 2070 m (6800 ft). The Carson Peak Unit 1 well also reveals that just north of the Henrys Fork fault at Phil Pico Mountain the Bridger Formation (middle to late Eocene) is 520 m (1710 ft) thick; an additional 460 m (1500 ft) of Bridger Formation lies above the well on Phil Pico Mountain. Beneath the Bridger Formation are 400 m (1180 ft) of Green River Formation (early to middle Eocene), 1520 m (5010 ft) of Wasatch Formation (early Eocene), and 850 m (2800 ft) of the Fort Union Formation (Paleocene). Stratigraphic data from three sections located east to west across the Phil Pico Mountain quadrangle show that the Protero-zoic Red Pine Shale has substantially more sandstone and less shale in the eastern section of the quadrangle. Field observations suggest that the Red Pine Shale undergoes a facies change across the quadrangle. However, due to the lack of continuous stratigraphic exposures, the cause of this change is not known.

Page generated in 0.0651 seconds