• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 9
  • 6
  • 2
  • 1
  • 1
  • Tagged with
  • 30
  • 30
  • 11
  • 11
  • 9
  • 9
  • 8
  • 6
  • 5
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The direct identification of structural spatial properties

Lee, Hun Gon January 1990 (has links)
No description available.
2

Vibrational power transmission through beam-like structures

Horner, Jane Louise January 1990 (has links)
No description available.
3

An Experimental Evaluation of the Application of Smart Damping Materials for Reducing Structural Noise and Vibrations

Jeric, Kristina Marie 27 April 1999 (has links)
This study evaluates the application of smart damping materials for reducing structural noise and vibrations. The primary purposes of this study are to: 1. Explore the feasibility of smart damping materials, such as piezoelectric materials, for augmenting and improving the noise and vibration benefits of passive damping materials, and 2. Provide a preliminary evaluation of the noise and vibration benefits, and weight savings of smart damping material as compared to conventional damping treatments. To achieve the objectives of the study, a special test rig, designed to measure both vibrations and structure-borne noise of a test plate, was constructed and validated in the early stages of the study. Upon validating the test rig and the instrumentation that was set up for data collection and processing, a series of tests were performed. The tests were intended to establish a baseline for the test rig and compare the performance of smart damping materials with a number of passive interior automotive treatments. Further, in order to evaluate the effect of smart damping materials on the sound transmission loss, a series of tests were conducted according to the SAE J1400 test specifications. The tests evaluate the transmission loss for smart damping materials for an undamped and a damped plate. The passive damping technique used for this study involved attaching piezoelectric patches with resonant electrical shunts. The vibration modes of the plate were determined both analytically and experimentally, using laser measurement techniques, in order to determine effective placement of the piezoceramic materials. Three piezoceramic patches were applied to control four structural resonance frequencies of the plate. The tests show that smart damping materials have substantial performance benefits in terms of providing effective noise and vibration reduction at a frequency range that is often outside the effective range of passive damping materials. Further, judging by the acceleration and noise reduction per added weight, the test results indicate that smart damping materials can decrease the vibration peak of a steel plate at 151 Hz by up to 16.24 dB with an additional weight of only 0.11 lb. The addition of constrained-layer damping (CLD) can decrease that same peak by 18.65 dB, but it weighs 10 times more. This feature of smart damping materials is particularly useful for solving particular noise or vibration problems at specified frequencies, without adding any weight to the vehicle or changing the vehicle structure. / Master of Science
4

Particle impact damping: influence of material and size

Marhadi, Kun Saptohartyadi 17 February 2005 (has links)
In this study, particle impact damping is measured for a cantilever beam with a particle-filled enclosure attached to its free end. Many particle materials are tested: lead spheres, steel spheres, glass spheres, tungsten carbide pellets, lead dust, steel dust, and sand. The effects of particle size are also investigated. Particle diameters are varied from about 0.2 mm to 3 mm. The experimental data collected is offered as a resourceful database for future development of an analytical model of particle impact damping.
5

Particle impact damping: influence of material and size

Marhadi, Kun Saptohartyadi 17 February 2005 (has links)
In this study, particle impact damping is measured for a cantilever beam with a particle-filled enclosure attached to its free end. Many particle materials are tested: lead spheres, steel spheres, glass spheres, tungsten carbide pellets, lead dust, steel dust, and sand. The effects of particle size are also investigated. Particle diameters are varied from about 0.2 mm to 3 mm. The experimental data collected is offered as a resourceful database for future development of an analytical model of particle impact damping.
6

Vibration Control of Large Scale Flexible Structures Using Magnetorheological Dampers

Liu, Wei 10 March 2005 (has links)
Structural vibration control (SVC) of large scale structures using the magnetorheological (MR) dampers are studied. Some key issues, i.e. model reduction, suppression of spillover instability, optimal placement of actuators and sensors, modeling of the MR dampers and their applications in SVC system for large scale structures, are addressed in this work. A new model reduction method minimizing the error of a modal-truncation based reduced order model (ROM) is developed. The proposed method is implemented by using a Genetic Algorithm (GA), and can be efficiently used to find a ROM for a large scale structure. The obtained ROM has a finite H2 norm and therefore can be used for H2 controller design. The mechanism of the spillover instability is studied, and a methodology to suppress the spillover instability in a SVC system is proposed. The suggested method uses pointwise actuators and sensors to construct a controller lying in an orthogonal space spanned by the several selected residual modes, such that the spillover instability caused by these residual modes can be successfully suppressed. A GA based numerical scheme used to find the optimal locations for the sensors and actuators of a SVC system is developed. The spatial H2 norm is used as the optimization index. Because the spatial H2 norm is a comprehensive index in evaluating the dynamics of a distributed system, a SVC system using the sensors and actuators located on the obtained optimal locations is able to achieve a better performance defined on a distributed domain. An improved model of MR dampers is suggested such that the model can maintain the desired hysteresis behavior when noisy data are used. For the simulation purpose, a numerical iteration technique is developed to solve the nonlinear differential equations aroused from a passive control of a structure using the MR dampers. The proposed method can be used to simulate the response of a large scale structural system with the MR dampers. The methods developed in this work are finally verified using an industrial roof structure. A passive and semi-active SVC systems are designed to attenuate the wind-induced structural vibration inside a critical area on the roof. The performances of the both SVC systems are analyzed and compared. Simulation results show that the SVC systems using the MR dampers have great potentials in reducing the structural vibration of the roof structure.
7

Indoor Human Information Acquisition from Physical Vibrations

Pan, Shijia 01 May 2018 (has links)
With the growth of networked smart devices in indoor environments, human information acquisition becomes essential for these devices to make the environment smart and people’s lives more convenient. These networked systems, which are often referred to as Cyber-Physical Systems (CPS), learn and make decisions collaboratively based on data input. The data could come from sensors that perceive various signals in the physical world, human input, etc. In this thesis, I will focus on information acquisition based on data from sensing the physical world. The major challenges to accurately interpreting the information these systems perceive result from the complexity of the physical world. An extreme solution to this problem is to have a large number of sensors or sensing configurations that collect a large amount of data. Ideally, we could then have labeled data for each sensing condition and possible scenario in order to accurately model the world. However, in the real world, such solutions could be difficult if not impossible to achieve due to constraints on the hardware, computational power, and (labeled) dataset. This thesis targets this problem and sets the goal of obtaining accurate indoor human information through limited system configurations and limited labeled data. A new concept of utilizing structures as sensors is presented as the foundation of the system. The intuition is that people induce ambient structures to vibrate all the time, and their activities and information can be inferred from this vibration. To achieve that with the aforementioned constraints, an understanding of the physical world (that has been studied for centuries in multiple disciplines) is used to assist the sensing and learning process for more accurate information acquisition from sensor data.
8

Finite element analysis of vibration models with interface conditions

Zietsman, Lizette 21 December 2007 (has links)
Please read the abstract in the section 00front of this document / Thesis (PhD (Applied Mathematics))--University of Pretoria, 2000. / Mathematics and Applied Mathematics / unrestricted
9

Modified Sliding Mode Control Algorithm for Vibration Control of Linear and Nonlinear Civil Structures

Wang, Nengmou 27 July 2011 (has links)
No description available.
10

Experimental investigation of damping structural vibrations using the acoustic black hole effect

Bowyer, E. P. January 2012 (has links)
This thesis describes the results of the experimental investigations into some new geometrical configurations in plate-like structures materialising one-dimensional (1D) acoustic black holes for flexural waves (wedges of power-law profile) and two-dimensional (2D) acoustic black holes for flexural waves (circular indentations of power-law profile). Such acoustic black holes allow the user to reduce the amplitudes of the vibration responses of plate-like structures to a maximum effect, while not increasing the mass of the structures. This thesis also suggests some new real world practical applications for this damping technique. Initially, the effects of geometrical and material imperfections on damping flexural vibrations in plates with attached wedges of power-law profile (1D black holes) were investigated, demonstrating that this method of damping is robust enough for practical applications. Then, damping of flexural vibrations in turbofan blades with trailing edges tapered according to a power-law profile has been investigated. In addition, experimental investigations into power-law profiled slots within plates have been also conducted. Another important configuration under investigation was that of circular indentations (pits) of power-law profile within the plate. In the case of quadratic or higher-order profiles, such indentations materialise 2D acoustic black holes for flexural waves. To increase the damping efficiency of power-law profiled indentations, the absorption area has been enlarged by increasing the size of the central hole in the pit, while keeping the edges sharp. The next step of investigation in this thesis was using multiple indentations of power-law profile (arrays of 2D black holes). It was shown that not only do multiple indentations of power-law profile provide substantial reduction in the damping of flexural vibrations, but also a substantial reduction in radiated sound power. The experimental results have been obtained also for a cylindrical plate incorporating a central hole of quadratic profile. They are compared to the results of numerical predictions, thus validating the results and the experimental technique. Investigations into the effects of indentations of power-law profile made in composite plates and panels and their subsequent inclusion into composite honeycomb sandwich panels are also reported. These indentations again act as 2D acoustic black holes for flexural waves and they effectively damp flexural vibrations within the panels. It was also demonstrated that these indentations can be enclosed in smooth surfaced panels and that no additional damping layer is required to induce the acoustic black hole effect in composite structures. In conclusion, it has been confirmed in this thesis that one and two-dimensional acoustic black holes represent an effective method of damping flexural vibrations and reducing the associated structure-borne sound. Furthermore, this thesis has shown that acoustic black holes can be efficiently employed in practical applications, such as trailing edges of jet engine fan blades, composite panels, and composite honeycomb sandwich structures.

Page generated in 0.1165 seconds