• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 26
  • 10
  • 9
  • 5
  • 2
  • Tagged with
  • 69
  • 69
  • 69
  • 14
  • 11
  • 10
  • 8
  • 8
  • 8
  • 7
  • 7
  • 7
  • 7
  • 7
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

From Horns to Helmets: Multi-Objective Design Optimization Considerations to Protect the Brain

Johnson, Kyle Leslie 12 August 2016 (has links)
This dissertation presents an investigation and design optimization of energy absorbent protective systems that protect the brain. Specifically, the energy absorption characteristics of the bighorn sheep skull-horn system were quantified and used to inform a topology optimization performed on a football helmet facemask leading to reduced values of brain injury indicators. The horn keratin of a bighorn sheep was experimentally characterized in different stress states, strain rates, and moisture contents. Horn keratin demonstrated a clear strain rate dependence in both tension and compression. As the strain rate increased, the flow stress increased. Also, increased moisture content decreased the strength and increased ductility. The hydrated horn keratin energy absorption increased at high strain rates when compared to quasi-static data. The keratin experimental data was then used to inform constitutive models employed in the simulation of bighorn sheep head impacts at 5.5 m/s. Accelerations values as high as 607 G’s were observed in finite element simulations for rams butting their heads, which is an order of magnitude higher than predicted brain injury threshold values. In the most extreme case, maximum tensile pressure and maximum shear strains in the ram brain were 245 kPa and 0.28, respectively. These values could serve as true injury metrics for human head impacts. Finally, a helmeted human head Finite Element (FE) model is created, validated, and used to recreate impacts from a linear impactor. The results from these simulations are used to train a surrogate model, which is in turn utilized in multi-objective design optimization. Brain injury indicators were significantly reduced by performing multi-objective design optimization on a football helmet facemask. In particular, the tensile pressure and maximum shear strain in the brain decreased 7.5 % and 39.5 %, respectively when comparing the optimal designs to the baseline design. While the maximum tensile pressure and maximum shear strain values in the brain for helmeted head impacts (30.2 kPa and 0.011) were far less than the ram impacts (245 kPa and 0.28), helmet impacts up to 12.3 m/s have been recorded, and could easily surpass these thresholds.
52

Chain-level conceptual understanding of the deformation of semicrystalline polymers and the fracture of ductile glassy polymers

Smith, Travis 02 August 2023 (has links)
No description available.
53

A Series of Robust Copper-Based Triazolyl Isophthalate MOFs: Impact of Linker Functionalization on Gas Sorption and Catalytic Activity †

Junghans, Ulrike, Kobalz, Merten, Erhart, Oliver, Preißler, Hannes, Lincke, Jörg, Möllmer, Jens, Krautscheid, Harald, Gläser, Roger 06 April 2023 (has links)
The synthesis and characterization of an isomorphous series of copper-containing microporous metal-organic frameworks (MOFs) based on triazolyl isophthalate linkers with the general formula 3 ¥[Cu4(m3-OH)2(R1-R2-trz-ia)3(H2O)x] are presented. Through size adjustment of the alkyl substituents R1 and/or R2 at the linker, the impact of linker functionalization on structure-property relationships was studied. Due to the arrangement of the substituents towards the cavities, the porosity (pore fraction 28%–39%), as well as the pore size can be adjusted by the size of the substituents of the triazole ring. Thermal analysis and temperature-dependent PXRD studies reveal a thermal stability of the MOFs up to 230 C due to increasing framework stability through fine-tuning of the linker substitution pattern. Adsorption of CO2 (298 K) shows a decreasing maximum loading with increasing steric demand of the substituents of the triazole ring. Furthermore, the selective oxidation of cyclohexene with tert-butyl hydroperoxide (TBHP) is studied over the MOFs at 323 K in liquid chloroform. The catalytic activity increases with the steric demand of the substituents. Additionally, these isomorphous MOFs exhibit considerable robustness under oxidizing conditions confirmed by CO2 adsorption studies, as well as by the catalytic selective oxidation experiments.
54

The Guinea Pig Model For Organophosphate Toxicology and Therapeutic Development

Ruark, Christopher Daniel 02 June 2015 (has links)
No description available.
55

Synthesis and Characterization of Diketopyrrolopyrrole- based Copolymers for Organic Electronic Applications

Wang, Qian 04 June 2024 (has links)
Diketopyrrolopyrrole (DPP)-based polymers currently rank among the best performing organic materials for high charge carrier mobility applications due to their high structural planarity and the simple synthetic access. Through chemical modifications on DPP-based polymers, the type of charge carrier transport (p-type, n-type or ambipolar) and the charge carrier mobility can be both modulated. In this thesis, the synthesis of a new n-type dithiazolyldiketopyrrolopyrrole (TzDPPTz)-based copolymer PTzDPPTzF4 with tetrafluorobenzene (F4) as comonomer is reported. PTzDPPTzF4 has a deeper lowest unoccupied molecular orbital (LUMO) energy level compared to the existing dithienyldiketopyrrolopyrrole (ThDPPTh)-based copolymer PThDPPThF4 due to the electron-deficient thiazole flanking units on the bicyclic DPP core. Moreover, the influence of homocoupling (hc) defects and backbone conformation on the properties of PTzDPPTzF4 is systematically investigated. Lastly, in order to further modulate the structural and electrical properties of DPP-based copolymers, polar side chains and comonomers with a different electron-withdrawing ability are introduced to the polymer backbone. In detail, a series of PTzDPPTzF4 polymers with similar molecular weight but varying TzDPPTz hc content from 0.6 – 12.4% is prepared via direct arylation polymerization (DAP) for the investigation of the hc-property relationship. Hc defects are found to red-shift the absorption, decrease the photoluminescence, and lower the LUMO energy level. In contrast, an influence on the film morphology or electron mobility is not observed. In order to study the conformation-property relationship, a structural variation in the DPP monomer is explored, i.e. the replacement of Tz by Th. To this end, a detailed comparative study of the properties between PTzDPPTzF4 and PThDPPThF4, which are prepared via DAP and have both comparable molecular weight and hc content, is presented. It is found that the replacement of Tz flanking units by Th flanking units on the DPP core has significant impact on the backbone conformation due to the occurrence of intramolecular hydrogen bonds, and thus strongly influences the opto-electronic and structural properties of the two polymers. PThDPPThF4 exhibits a stronger aggregation ability, a higher degree of crystallinity, a lower degree of paracrystallinity and an increased long-range order, which finally translates into a 20 times higher field-effect electron mobility. Finally, comonomer and side chain variations of DPP-based polymers are carried out for their potential use in thermoelectric investigations. Through the optimization of the polymerization conditions, a number-average molecular weight of 19.1 kg/mol is achieved for ThDPPTh-based polymers with single-oxygen side chains and F4 as comonomer. In addition, two ThDPPTh-based copolymers with biEDOT as comonomer are synthesized, which contain polar triethylene glycol (TEG) side chains as well as branched aliphatic side chains in different ratios. In summary, the economically efficient and ecologically green DAP method is demonstrated to be an efficient and versatile synthetic tool for copolymerizing TzDPPTz or ThDPPTh monomers bearing either aliphatic or polar side chains with either electron-rich or electron-deficient comonomers.
56

Properties and Performance of Polymeric Materials Used in Fuel Cell Applications

Divoux, Gilles Michel Marc 04 April 2012 (has links)
Over the past three decades, the steady decrease in fossil energy resources, combined with a sustained increase in the demand for clean energy, has led the scientific community to develop new ways to produce energy. As is well known, one of the main challenges to overcome with fossil fuel-based energy sources is the reduction or even elimination of pollutant gases in the atmosphere. Although some advances have helped to slow the emission of greenhouse gases into the atmosphere (e.g., electric cars and more fuel-efficient gas-burning automobiles), most experts agree that it is not enough. Proton Exchange Membrane (PEM) fuel cells have been widely recognized as a potentially viable alternative for portable and stationary power generation, as well as for transportation. However, the widespread commercialization Proton Exchange Membrane Fuel Cells (PEMFCs) involves a thorough understanding of complex scientific and technological issues. This study investigated the various structure-property relationships and materials durability parameters associated with PEMFC development. First, the correlation between perfluorinated ionomer membranes and processing/performance issues in fuel cell systems was investigated. As confirmed by small-angle X-ray scattering data, impedance analysis, and dynamic mechanical analysis, solution processing with mixed organic-inorganic counterions was found to be effective in producing highly arranged perfluorinated sulfonic acid ionomer (PFSI) membranes with more favorable organization of the ionic domain. Moreover, thermal annealing was shown to enhance the proton mobility, thereby facilitating reorganization of the polymer backbone and the hydrophilic region for improved crystallinity and proton transport properties. This research also confirmed an increase in water uptake in the solution-processed membranes under investigation, which correlated to an increase in proton conductivity. Thus, annealing and solution-processing techniques were shown to be viable ways for controlling morphology and modulating the properties/performance of PFSI membranes. Second, this study investigated the role of the morphology on water and proton transport in perfluorinated ionomers. When annealed at high temperatures, a significant decrease in water uptake and an increase in crystallinity were observed, both of which are detrimental to fuel cell performance. Additionally, controlling the drying process was found to be crucial for optimizing the properties and performance of these membranes, since drying at temperatures close or above the α-relaxation temperature causes a major reorganization within the ionic domains. Third, although many investigations have looked at key PEMFC components, (e.g., the membrane, the catalyst, and the bipolar plates), there have been few studies of more "minor" components—namely, the performance and durability of seals, sealants, and adhesives, which are also exposed to harsh environmental conditions. When seals degrade or fail, reactant gases leak or are mixed, it can degrade the membrane electrode assembly (MEA), leading to a performance decrease in fuel cell stack performance. This portion of the research used degradation studies of certain proprietary elastomeric materials used as seals to investigate their overall stability and performance in fuel cell environments with applied mechanical stresses. Additionally, characterization of the mechanical and viscoelastic properties of these materials was conducted in order to predict the durability based on accelerated aging simulations as well. Continuous stress relaxation (CSR) characterization was performed on molded seals over a wide range of aging conditions using a customized CSR fixture. The effects of temperature, stress, and environmental conditions are reported in terms of changes in momentary and stress relaxations, chain scission and secondary crosslink formation. Aging studies provided insights on how anti-degradants or additives affect the performance and properties of sealing materials, as well as how a variety of environmental considerations might be improved to extend the lifetime of these elastomers. / Ph. D.
57

Design, Synthesis and Self-Assembly of Polymeric Building Blocks and Novel Ionic Liquids, Ionic Liquid-Based Polymers and Their Properties

Lee, Minjae 09 September 2010 (has links)
The convergence of supramolecular and polymer sciences has led to the construction of analogs of traditional covalently-constructed polymeric structures and architectures by supramolecular methods. Host-guest complexations of polymers are also possible through well-defined synthesis of polymeric building blocks, for novel supramolecular polymers. Monotopic polymeric building blocks were synthesized by controlled radical polymerizations with a crown or paraquat initiator. The combinations of terminal and central functionalities of host and guest polymeric building blocks provided chain-extended and tri-armed homopolymers, and diblock and tri-armed copolymers. A supramolecular graft copolymer was formed from a main-chain poly(ester crown ether) and a paraquat terminated polystyrene. This comb-like copolymer was characterized by a large viscosity increase. A four-armed polystyrene-b-poly(n-butyl methacrylate) was synthesized from a pseudorotaxane macroinitiator derived from a complex of a crown-centered polystyrene and a dufunctional paraquat compound. A single peak with higher molecular weight from size exclusion chromatography proved the copolymer formation. Supramolecular interactions enhance the ionic conductivity of semi-crystalline ionic polymers; the ionic conductivity of a C₆-polyviologen and dibenzo-30-crown-10 mixture was 100 times higher than the polyviologen itself. However, ionic conductivities of amorphous polyviologens with polyethers were influenced only by glass transition temperature changes. New imidazolium ionic liquid monomers and imidazolium based polymers were synthesized for potential applications in electroactive devices, such as actuators. Structure-property relationships for pendant imidazolium polyacrylates and main-chain imidazolium polyesters were investigated. Terminal ethyleneoxy moeties enhanced ionic conduction 2~3 times; however, the alkyl chain length effect was negligible. For the imidazoium polyesters, higher ion conductivities result from 1) mono-imidazolium over bis-imidazolium, and 2) bis(trifluoromethanesulfonyl)imide polymers over hexafluorophosphate analogs. A semi-crystalline hexafluorophosphate polyester with C₁₀-sebacate-C₁₀, displayed 400-fold higher ionic conductivity than the amorphous C₆-sebacate-C₆ analogue, suggesting the formation of a biphasic morphology in the former polyester. New dicationic imidazolium salts have interesting features. 1,2-Bis[N-(N'-alkylimidazoilum)]ethane salts stack well in the solid state and possess multiple solid-solid phase transitions. They complex with dibenzo-24-crown-8 and a dibenzo-24-crown-8 based pyridyl cryptand with <i>K<sub>a</sub></i> = ~30 and 360 M¹, respectively. Some of these dicationic imidazolium salts have low entropies of fusion, typical of plastic crystals. These newly discovered imidazolium homopolymers have ionic conductivities up to 10⁴ (S cm⁻¹); however, better properties are still required. Well-designed block copolymers should provide both good electrical and mechanical properties from bicontinuous morphologies, such ion channels. / Ph. D.
58

Modelling and prediction of bacterial attachment to polymers

Epa, V.C., Hook, A.L., Chang, Chien-Yi, Yang, J., Langer, R., Anderson, D.G., Williams, P., Davies, M.C., Alexander, M.R., Winkler, D.A. 12 April 2013 (has links)
Yes / Infection by pathogenic bacteria on implanted and indwelling medical devices during surgery causes large morbidity and mortality worldwide. Attempts to ameliorate this important medical issue have included development of antimicrobial surfaces on materials, “no touch” surgical procedures, and development of materials with inherent low pathogen attachment. The search for new materials is increasingly being carried out by high throughput methods. Efficient methods for extracting knowledge from these large data sets are essential. Data from a large polymer microarray exposed to three clinical pathogens is used to derive robust and predictive machine-learning models of pathogen attachment. The models can predict pathogen attachment for the polymer library quantitatively. The models also successfully predict pathogen attachment for a second-generation library, and identify polymer surface chemistries that enhance or diminish pathogen attachment. / CSIRO Advanced Materials Transformational Capability Platform. Newton Turner Award for Exceptional Senior Scientists. Wellcome Trust. Grant Number: 085245. NIH. Grant Number: R01 DE016516
59

Étude sur les propriétés physicochimiques et électrochimiques des liquides ioniques redox et leur application en tant qu’électrolyte dans les supercapaciteurs

Xie, Han Jin 12 1900 (has links)
Ce mémoire porte sur les recherches et les développements dans le domaine des électrolytes à base de liquide ionique redox. Une nouvelle famille de liquide ionique redox basée sur le ferrocenylsulfonyl(trifluoromethylsulfonyl) (FcNTf) a été développée et étudiée pour la première fois afin de démontrer le potentiel de ces liquides ioniques dans les dispositifs de stockage d’énergie. En premier lieu, les liquides ioniques redox (RILs) composés de l’anion électroactif et du cation d’alkylimidazolium sont synthétisés et caractérisés. L’impact de la variation des chaînes alkyles du cation sur les propriétés physicochimiques et électrochimiques du RIL a été étudié. À une faible concentration en solution, l’impact du cation a peu d’influence sur l’ensemble des propriétés. Cependant, à haute concentration (>50 % massique) et sans électrolyte de support, la formation de films en oxydation a été observée à l'électrode positive. Ce point est intéressant pour les futures recherches et développements dans le domaine, puisque la variation des chaînes alkyles du cation des liquides ioniques redox et la formation de films lors de l’oxydation du FcNTf est peu connue et comprise en littérature. De plus, l’optimisation des conditions de solution d'électrolyte RIL dans les supercapaciteurs est aussi présentée. En deuxième lieu, la mise en application des RILs dans les supercapaciteurs a été testée. La performance énergétique et le mécanisme d’autodécharge ont été ciblés dans cette étude. En présence de l’électrolyte redox, la contribution des réactions faradaiques permet d'accomplir un gain énergique de 287 % versus les systèmes purement capacitifs. À cause de la formation de film à l’électrode, l’électrolyte redox FcNTf joue un rôle primordial dans la prévention de l’autodécharge versus les liquides ioniques qui étaient connus jusqu’à présent. Finalement, ce mémoire a permis de mieux comprendre les effets structure-propriétés relative aux modifications du cation chez les liquides ioniques redox. / This thesis is focuses on the development of redox ionic liquid electrolytes for supercapacitors. A new family of redox ionic liquids (RILs) based on ferrocenylsulfonyl(trifluoromethylsulfonyl) (FcNTf) is reported, which show great potential as functional materials for energy storage devices. For the first part, RILs with electro-active anion and alkylimidazolium cations are synthesised and characterized. The impact of the variation of the imidazolium cation alkyl chain on the electrochemical and physicochemical properties is analysed. At lower concentrations of RIL, the cation structure has little impact on the solution properties. However, at higher concentrations, (>50 wt. %) and without supporting electrolyte, formation of a thin film on the electrode surface accompanies the oxidation process. The thin film formation has great impact for the control of deposition of the charged species on the electrode. The influence of the cation structure on the RIL and film deposition during the oxidation reaction is not well understood in the literature so far. In addition, optimisation of RILs as electrolytes for supercapacitors is also presented. In the second part, the RIL electrolyte is tested in supercapacitor cells. With faradaic contribution from the redox electrolyte, an increase of 287% in the energy is observed versus capacitive electrochemical systems. Furthermore, the film layer formation achieved by the use of FcNTf redox ionic liquid is an effective way to prevent the self-discharge of redox-active electrolyte supercapacitor. This thesis has helped to understand the structure-property relationships of redox ionic liquids.
60

Development of new polyesters by organometallic and enzymatic catalysis / Développement de nouveaux polyesters par catalyse organométallique et enzymatique

Debuissy, Thibaud 10 May 2017 (has links)
Dans un contexte du développement durable, de nouvelles architectures macromoléculaires biosourcées ont été synthétisées à partir de synthons (diacides et diols) pouvant être obtenus par voies fermentaires à partir de sources carbonées issues de la biomasse. Dans un premier temps, différents copolyesters aliphatiques ont été synthétisés en masse, à l’aide d’un catalyseur organométallique à base de titane, à partir de diacides (acides succinique et adipique) et de diols (1,3-propanediol, 1,4-butanediol et 2,3-butanediol) courts. Dans un deuxième temps, des architectures macromoléculaires similaires ont été obtenues par catalyse enzymatique en solution à l’aide de la lipase B de Candida antarctica. L’influence de la longueur et de la structure des monomères sur leur réactivité en présence de la lipase a été particulièrement étudiée. Dans un troisième et dernier temps, des architectures macromoléculaires à base d’oligomères hydroxytéléchéliques d’un polyester bactérien : le poly((R)-3-hydroxybutyrate) (PHB)tels que des poly(ester-éther-uréthane)s et des copolyesters ont été obtenues soit par couplage de chaîne à l’aide d’un diisocyanate, ou par transestérification organométallique et enzymatique. Ces études ont permis d’analyser en détail l’effet de l’addition des synthons biosourcés dans les architectures macromoléculaires et notamment sur la structure cristalline, la stabilité thermique et les propriétés thermiques et optiques de ces polymères. De plus, le grand potentiel de la catalyse enzymatique pour la synthèse de polyesters et celui de l’utilisation d’oligomères de PHB pour l’élaboration de nouveaux matériaux performants ont pu être largement démontrés. / In the context of sustainable development, new biobased and aliphatic macromolecular architectures were synthesized from building blocks that can be obtained by fermentation routes using carbon sources from the biomass. First, several aliphatic copolyesters were synthesized in bulk from short dicarboxylic acids (such as succinic and adipic acids) and diols (such as 1,3-propanediol, 1,4-butanediol and 2,3-butanediol) by organometallic catalysis using an effective titanium-based catalyst. In a second time, similar macromolecular architectures were synthesized by an enzymatic process in solution using Candida antarctica lipase B as catalyst. The influence of the alkyl chain length and the structure of monomers on their reactivity toward the lipase were particularly discussed. In the third and last part, new macromolecular architectures based on hydroxytelechelic oligomers of a bacterial polyester: poly((R)-3-hydroxybutyrate) (PHB), such as poly(ester-ether-urethane)s and copolyesters, were obtained by either chain-coupling using a diisocyanate, or organometallic and enzymatic transesterification, respectively.These studies permitted to determine a close relationship between the effect of the building blocks structure integrated in the final macromolecular architectures and the intrinsic properties, such as the crystalline structure, the thermal stability and the thermal and optical properties, of these polymers. In addition, the great potential of the lipase-catalyzed synthesis of polyesters and the use of PHB oligomers for developing new high performance materials has been clearly established.

Page generated in 0.1525 seconds