• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 608
  • 124
  • 124
  • 110
  • 71
  • 50
  • 20
  • 18
  • 17
  • 14
  • 12
  • 10
  • 8
  • 5
  • 4
  • Tagged with
  • 1388
  • 355
  • 220
  • 156
  • 156
  • 141
  • 134
  • 124
  • 123
  • 113
  • 110
  • 98
  • 95
  • 85
  • 85
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Tuning of PID Controllers by £h-Sensitivity

Lien, I-Sheng 16 August 2001 (has links)
Since uncertainty exists inevitably in control systems, it is questionable whether the controller, designed to compensate a nominal plant well, still guarantees the criteria of robust stability and robust H¡Û performance for the perturbed plant. In this thesis, controller parameters tuning based on the sensitivity concept of structured singular value, called £g-sensitivity, will be adopted to do the parameter adjustment so that, when the influence of uncertainty is considered, the robust stability and robust performance properties of the nominal closed-loop system will be preserved. In view of the time consuming effect of numerical computation and the misjudgment due to discontinuity problem involved in the £g-sensitivity analysis, this thesis proposes the sensitivity concept of skewed structured singular value, called £h-sensitivity, to remedy these drawbacks. Finally, the feasibility of the £h-sensitivity based controller parameters tuning technique is verified by the simulation results of two examples.
32

The study on the structure of the gas diffusion layer of a DMFC electrode

Shen, Jia-shiun 11 September 2007 (has links)
Due to the micro-pillar-structured electrodes were made in the gas diffusion layer (GDL) of the proton exchange membrane fuel cell (PEMFC), the cell performance was raised significantly; the study therefore aims to understand whether the same cell performance can be achieved if the micro-pillar-structures were made in the direct methanol fuel cell (DMFC) of the anode. At room temperature and naturally breathed air, the performance of the micro-pillar-structured electrodes was the same as the conventional electrodes. The performance of the electrodes does not rely on the surface area between the micro porous layers and the catalyst. The experimental results inference indicates that no efficiency can be completed. The study then changed the experimental condition, i.e. increased the temperature of the methanol-water solution to 50¢J and reduced the methanol concentrations to 0.5M. The purpose was to carry out the reaction of the surface between the methanol and the catalyst layer. However, the experimental result shows no variation between the micro-pillar- structured electrodes and the conventional electrodes. Because of the test of the current density of the DMFC was carried out in a small power (0~25mW/cm2). The current density of the PEMFC was carried out in a high power (400mW/cm2 ~). The study proposed that the cell operating temperature can be raised and the oxygen can be put in the cathode, the performance of the micro-pillar-structured electrodes can thus be enhanced if the reaction was in a high current density. At the finals, the study tried to compare the efficiency between self-made electrodes and commercial electrodes (E-TEK). The result showed that both max power densities can reach 17mW/cm2 at room temperature and naturally breathed air.
33

A system for programming with interactive graphical support /

Pong, Man-chi. January 1980 (has links)
Thesis--M. Phil., University of Hong Kong, 1980.
34

Characterization of structured packing via computational fluid dynamics

Basden, Michael Allen 09 February 2015 (has links)
CFD simulations were used to study single phase and multiphase flows through structured packing. Simulations utilizing a high fidelity, digital copy of a packing element were validated against experimental results for both single phase and multiphase flows. Single phase simulations were carried out on a variety of periodic packing elements to examine the impact of packing channel geometry on pressure drop. Multiphase simulations on periodic elements were used to examine the effect of hydrodynamic properties and boundary conditions. Single-phase simulations of nitrogen flow through the high fidelity geometry produced via X-ray CT scans showed average deviations less than 15% when compared to experimental measurements. This error was reduced to 7% when a mesh utilizing prism layers to accurately resolve the boundary layer was used. With a validated model for single phase flow, the application of CFD to packing design was investigated on periodic geometries with varied packing parameters (e.g. channel corrugation angle and channel side length). It was found that current industrial packings have channel geometries maximizing pressure drop, indicating some degree of optimization around channel geometry is possible depending on separation needs. Multiphase simulations using the Volume of Fluid model examined the effects of liquid density, viscosity, surface tension, and contact angle on small-scale packing geometries. Contact angle had the most pronounced influence on predicted wetting, and simulations demonstrated that using experimentally determined static contact angles was not an appropriate choice for the simulation contact angle. The predicted influence of surface tension qualitatively matched experimental data for wetted area. Liquid viscosity and density also demonstrated qualitative agreement with semi-empirical models derived from experimental data. Experimental data collected via absorption of CO2 into 0.1 mol/L NaOH were compared to simulation predictions using a geometry generated via X-ray CT scans. Wetted area predictions matched experimental data best when a fully wetting static contact angle (0°) was used, yielding simulated results 3.4% lower than experimental data on average. Irrigated pressure drop and holdup predictions were significantly higher than experimental data. / text
35

A macro-defined interpreter for a structured high level language

Smith, Robert W. (Robert William), 1952- January 1977 (has links)
No description available.
36

Characterization of Mobile Phase Flow Inhomogeneity in Micro-structured Fibres: Towards the Development of Multi-channel Supports for Open Tubular Liquid Chromatography

Smith, JUSTIN 15 August 2012 (has links)
Despite the prominent role played by open tubular columns in gas chromatography, they have enjoyed comparatively little success as supports for open tubular liquid chromatography (OTLC), owing to impractical channel diameters (3-5 μm) required to facilitate retention in the liquid phase. In an effort to circumvent the technical issues associated with such narrow diameters, columns with multiple parallel channels have been suggested as alternatives – to this end, micro-structured fibres (MSFs) have been proposed as supports for OTLC. Much research has been conducted using MSFs for chromatography in the Oleschuk group, and although some success has been achieved, performance has been continuously hindered by flow velocity variation among the channels stemming from differences in channel sizes (or channel variance) as well as differences in stationary phase coverage, which serve to degrade column efficiency. Recent efforts have focused on devising a novel method for assessing the channel variance of MSFs. This method seeks to determine hole tolerance through evaluation of the extent of band broadening that occurs when performing chromatography in the absence of a retentive mechanism. Using this method, a linear correlation between the relative standard deviation of the channel diameters and the amount of broadening was revealed. To supplement the results, computational fluid dynamics was employed to simulate fluid flow through multi-channel columns. The results of these simulations again provided a linear correlation between the RSD of the channel diameters and the extent of flow velocity variation among the channels. / Thesis (Master, Chemistry) -- Queen's University, 2012-08-15 11:57:28.915
37

Prospective structured support and nanostructured active phase for oil upgrading

Chhabra, Arvind Unknown Date
No description available.
38

自我体験に関する縦断研究 : 小学校高学年生・中学 1 年生を対象として

天谷, 祐子, AMAYA, Yuko 27 December 2001 (has links)
国立情報学研究所で電子化したコンテンツを使用している。
39

Fabrication of honeycomb structured porous membranes for biological application

Min, Eun Hee , Centre for Advanced Macromolecular Design, Faculty of Engineering, UNSW January 2010 (has links)
This thesis studies the synthesis of diverse architectures of polymers via the reversible addition fragmentation chain transfer (RAFT) polymerisation process that is one of the most novel and versatile controlled polymerisation techniques. Star polymers, comb polymers, amphiphilic block copolymers, and random copolymers were utilised to fabricate porous films with hexagonal arrangement via a ???bottom-up??? engineering approach, namely a ???breath figure??? technique. The quality (i.e. pore regularity and pore size) of the films was optimised by controlling casting variables including humidity, airflow, concentration of polymer solution, polymer architecture, molecular weight of polymer, substrate, and casting volume. Porous membranes were chemically crosslinked to improve their mechanical strength if required. Furthermore, chemical surface modification of porous films was performed by grafting desired polymer (i.e. PNIPAAm or PAGA) via RAFT polymerisation. The RAFT groups present in the films play a role as anchoring sites for polymerisation, thus the complex initiator immobilising can be avoided in our system. The desired polymer grafting is able to enhance wettability and provide binding sites for adhesion and proliferation of cells. The topography of ungrafted and grafted films was analysed using optical microscopy, scanning electron microscopy, atomic force microscopy, confocal microscopy, ATR-FTIR, and XPS.
40

Learning comprehensible theories from structured data /

Ng, Kee Siong. January 2005 (has links)
Thesis (Ph.D.)--Australian National University, 2005.

Page generated in 0.0498 seconds