• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 7
  • 1
  • 1
  • 1
  • Tagged with
  • 15
  • 15
  • 8
  • 6
  • 6
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

A student's t filter for heavy tailed process and measurement noise

Roth, Michael, Ozkan, Emre, Gustafsson, Fredrik January 2013 (has links)
We consider the filtering problem in linear state space models with heavy tailed process and measurement noise. Our work is based on Student's t distribution, for which we give a number of useful results. The derived filtering algorithm is a generalization of the ubiquitous Kalman filter, and reduces to it as special case. Both Kalman filter and the new algorithm are compared on a challenging tracking example where a maneuvering target is observed in clutter. / MC Impulse
2

Heavy-Tailed Innovations in the R Package stochvol

Kastner, Gregor January 2015 (has links) (PDF)
We document how sampling from a conditional Student's t distribution is implemented in stochvol. Moreover, a simple example using EUR/CHF exchange rates illustrates how to use the augmented sampler. We conclude with results and implications. (author's abstract)
3

Confronting Theory with Data: the Case of DSGE Modeling

Poudyal, Niraj 07 December 2012 (has links)
The primary objective of this is to confront the DSGE model (Ireland, 2011) with data in an attempt to evaluate its empirical adequacy. The perspective used for this evaluation is based on unveiling the statistical model (structural VAR) behind the DSGE model, with a view to test its probabilistic assumptions vis-a-vis the data. It is shown that the implicit statistical model is seriously misspecified and the information from mis-specification (M-S) testing is then used to respecify the original structural VAR in an attempt to achieve statistical adequacy. The latter provides a precondition for the reliability of any inference based on the statistical model. Once the statistical adequacy of the respecified model is secured through thorough M-S testing, inferences like the likelihood-ratio test for the overidentifying restrictions, forecasting, impulse response analysis are applied to the original DSGE model to evaluate its empirical adequacy. At the end, the same inferential procedure is applied to the CAPM model. / Ph. D.
4

Volatility Modeling Using the Student's t Distribution

Heracleous, Maria S. 02 October 2003 (has links)
Over the last twenty years or so the Dynamic Volatility literature has produced a wealth of univariate and multivariate GARCH type models. While the univariate models have been relatively successful in empirical studies, they suffer from a number ofweaknesses, such as unverifiable parameter restrictions, existence of moment conditions and the retention of Normality. These problems are naturally more acute in the multivariate GARCH type models, which in addition have the problem of overparameterization. This dissertation uses the Student's t distribution and follows the Probabilistic Reduction (PR) methodology to modify and extend the univariate and multivariate volatility models viewed as alternative to the GARCH models. Its most important advantage is that it gives rise to internally consistent statistical models that do not require ad hoc parameter restrictions unlike the GARCH formulations. Chapters 1 and 2 provide an overview of my dissertation and recent developments in the volatility literature. In Chapter 3 we provide an empirical illustration of the PR approach for modeling univariate volatility. Estimation results suggest that the Student's t AR model is a parsimonious and statistically adequate representation of exchange rate returns and Dow Jones returns data. Econometric modeling based on the Student's t distribution introduces an additional variable - the degree of freedom parameter. In Chapter 4 we focus on two questions relating to the `degree of freedom' parameter. A simulation study is used to examine:(i) the ability of the kurtosis coefficient to accurately capture the implied degrees of freedom, and (ii) the ability of Student's t GARCH model to estimate the true degree of freedom parameter accurately. Simulation results reveal that the kurtosis coefficient and the Student's t GARCH model (Bollerslev, 1987) provide biased and inconsistent estimators of the degree of freedom parameter. Chapter 5 develops the Students' t Dynamic Linear Regression (DLR) }model which allows us to explain univariate volatility in terms of: (i) volatility in the past history of the series itself and (ii) volatility in other relevant exogenous variables. Empirical results of this chapter suggest that the Student's t DLR model provides a promising way to model volatility. The main advantage of this model is that it is defined in terms of observable random variables and their lags, and not the errors as is the case with the GARCH models. This makes the inclusion of relevant exogenous variables a natural part of the model set up. In Chapter 6 we propose the Student's t VAR model which deals effectively with several key issues raised in the multivariate volatility literature. In particular, it ensures positive definiteness of the variance-covariance matrix without requiring any unrealistic coefficient restrictions and provides a parsimonious description of the conditional variance-covariance matrix by jointly modeling the conditional mean and variance functions. / Ph. D.
5

Essays on DSGE Models and Bayesian Estimation

Kim, Jae-yoon 11 June 2018 (has links)
This thesis explores the theory and practice of sovereignty. I begin with a conceptual analysis of sovereignty, examining its theological roots in contrast with its later influence in contestations over political authority. Theological debates surrounding God’s sovereignty dealt not with the question of legitimacy, which would become important for political sovereignty, but instead with the limits of his ability. Read as an ontological capacity, sovereignty is coterminous with an existent’s activity in the world. As lived, this capacity is regularly limited by the ways in which space is produced via its representations, its symbols, and its practices. All collective appropriations of space have a nomos that characterizes their practice. Foucault’s account of “biopolitics” provides an account of how contemporary materiality is distributed, an account that can be supplemented by sociological typologies of how city space is typically produced. The collective biopolitical distribution of space expands the range of practices that representationally legibilize activity in the world, thereby expanding the conceptual limits of existents and what it means for them to act up to the borders of their capacity, i.e., to practice sovereignty. The desire for total authorial capacity expresses itself in relations of domination and subordination that never erase the fundamental precarity of subjects, even as these expressions seek to disguise it. I conclude with a close reading of narratives recounting the lives of residents in Chicago’s Englewood, reading their activity as practices of sovereignty which manifest variously as they master and produce space. / Ph. D. / For an empirical analysis the statistical model implied in the theoretical model is crucial. The statistical model is simply the set of probabilistic assumptions imposed on the data, and invalid probabilistic assumptions undermines the reliability of statistical inference, rendering the empirical analysis untrustworthy. Hence, for securing trustworthy evidence one should always validate the implicit statistical model before drawing any empirical result from a theoretical model. This perspective is used to shed light on a widely used category of macroeconometric models known as Dynamic Stochastic General Equilibrium (DSGE) Models. Using U.S. time-series data, the paper demonstrates that a widely used econometric model for the U.S. economy is severely statistically misspecified; almost all of its probabilistic assumptions are invalid for the data. The paper proceeds to respecify the implicit statistical model behind the theoretical model with a view to secure its statistical adequacy (validity of its probabilistic assumptions). Using the respecified statistical model, the paper calls into question the literature evaluating the theoretical adequacy of current DSGE models, ignoring the fact that such evaluations are untrustworthy because they are based on statistically unreliable procedures.
6

Robust Prediction of Large Spatio-Temporal Datasets

Chen, Yang 24 May 2013 (has links)
This thesis describes a robust and efficient design of Student-t based Robust Spatio-Temporal Prediction, namely, St-RSTP, to provide estimation based on observations over spatio-temporal neighbors. It is crucial to many applications in geographical information systems, medical imaging, urban planning, economy study, and climate forecasting. The proposed St-RSTP is more resilient to outliers or other small departures from model assumptions than its ancestor, the Spatio-Temporal Random Effects (STRE) model. STRE is a statistical model with linear order complexity for processing large scale spatiotemporal data. However, STRE has been shown sensitive to outliers or anomaly observations. In our design, the St-RSTP model assumes that the measurement error follows Student's t-distribution, instead of a traditional Gaussian distribution. To handle the analytical intractable inference of Student's t model, we propose an approximate inference algorithm in the framework of Expectation Propagation (EP). Extensive experimental evaluations, based on both simulation and real-life data sets, demonstrated the robustness and the efficiency of our Student-t prediction model compared with the STRE model. / Master of Science
7

Volatility Modeling and Risk Measurement using Statistical Models based on the Multivariate Student's t Distribution

Banasaz, Mohammad Mahdi 01 April 2022 (has links)
An effective risk management program requires reliable risk measurement. Failure to assess inherited risks in mortgage-backed securities in the U.S. market contributed to the financial crisis of 2007–2008, which has prompted government regulators to pay greater attention to controlling risk in banks, investment funds, credit unions, and other financial institutions to prevent bankruptcy and financial crisis in the future. In order to calculate risk in a reliable manner, this thesis has focused on the statistical modeling of expected return and volatility. The primary aim of this study is to propose a framework, based on the probabilistic reduction approach, to reliably quantify market risk using statistical models and historical data. Particular emphasis is placed on the importance of the validity of the probabilistic assumptions in risk measurement by demonstrating how a statistically misspecified model will lead the evaluation of risk astray. The concept of market risk is explained by discussing the narrow definition of risk in a financial context and its evaluation and implications for financial management. After highlighting empirical evidence and discussing the limitations of the ARCH-GARCH-type volatility models using exchange rate and stock market data, we proposed Student's t Autoregressive models to estimate expected return and volatility to measure risk, using Value at Risk (VaR) and Expected Shortfall (ES). The misspecification testing analysis shows that our proposed models can adequately capture the chance regularities in exchange rates and stock indexes data and give a reliable estimation of regression and skedastic functions used in risk measurement. According to empirical findings, the COVID-19 pandemic in the first quarter of 2020 posed an enormous risk to global financial markets. The risk in financial markets returned to levels prior to the COVID-19 pandemic in 2021, after COVID-19 vaccine distribution started in developed countries. / Doctor of Philosophy / Reliable risk measurement is necessary for any effective risk management program. Hence, the primary purpose of this dissertation was to propose a framework to quantify market risk using statistical models and historical data, with a particular emphasis placed on checking the validity of probabilistic assumptions underlying models. After discussing the concept of market risk and its evaluation methods in financial management, we explored the empirical evidence in financial data and highlighted some limitations of other well-known modeling approaches. In order to ameliorate limitations, this study proposed Student's t Autoregressive models to estimate the conditional mean and the conditional variance of the financial variables and use them to measure risk via two popular methods: Value at Risk (VaR) and Expected Shortfall (ES). Further investigation shows that our proposed models can adequately model exchange rates and stock indexes data and give reliable estimations to use in risk measurement. We used our model to quantify risk in global financial markets in recent years. The results show that the COVID-19 pandemic posed an enormous risk to global financial markets in the first quarter of 2020. In 2021, the level of risk in financial markets returned to levels before the COVID-19 pandemic, after COVID-19 vaccine distribution started in developed countries.
8

On modeling the volatility in speculative prices

Hou, Zhijie 12 June 2014 (has links)
Following the Probabilistic Reduction(PR) Approach, this paper proposes the Student’s Autoregressive (St-AR) Model, Student’s t Vector Autoregressive (St-VAR) Model and their heterogeneous versions, as an alternative to the various ARCH type models, to capture univariate and multivariate volatility. The St-AR and St-VAR models differ from the latter volatility models because they give rise to internally consistent statistical models that do not rely on ad-hoc specification and parameter restrictions, but model the conditional mean and conditional variance jointly. The univariate modeling is illustrated using the Real Effect Exchange Rate(REER) indices of three mainstream currencies in Asia (RMB, Hong Kong Dollar and Taiwan Dollar), while the multivariate volatility modeling is applied to investigate the relationship between the REER indices and stock price indices in mainland China, as well as the relationship between the stock prices in mainland China and Hong Kong. Following the PR methodology, the information gained in Mis-Specification(M-S) testing leads to respecification strategies from the original Normal-(V)AR models to the St-(V)AR models. The results from formal Mis-Specification (M-S) tests and forecasting performance indicate that the St-(V)AR models provide a more appropriate way to model volatility for certain types of speculative price data. / Ph. D.
9

Analysis of Estimation and Specification of Various Econometric Models Used to Assess Financial Risk / Análisis de la estimación y la especificación de diversos modelos econométricos utilizados para evaluar el riesgo financiero

Acereda Serrano, Beatriz 25 July 2024 (has links)
This thesis aims to analyze some of the available methods that aid in risk estimation based on econometric models, as well as to propose some new ones. Some of the questions that are expected to be answered include which distribution to choose to obtain better risk estimates for series with abnormal behaviours, how to determine whether the distribution in parametric conditional models is a Student’s t, and how to assess whether an asset’s risk helps predict the risk of another asset. In Chapter 1, we estimate several cryptocurrencies’ Expected Shortfall using different error distributions and GARCH-type models for conditional variance. ur goal is to examine which distributions perform better and to check which component of the specification plays a more crucial role in estimating Expected Shortfall. The performance of the estimations is conducted using a backtesting technique with a rolling-window approach. Results show that, in the case of Bitcoin, it is important to use a distribution with at least two parameters that control its shape and an extension of the GARCH model, whether it be the NGARCH or the CGARCH model. On the other hand, other smaller cryptocurrencies yield good enough risk predictions with the Student’s t distribution and a GARCH model. The fact that the main measures of financial risk are focused on the tail of the distribution of returns highlights the importance of the choice of an appropriate distribution model. Chapter 2 develops a procedure for consistently testing the specification of a Student’s t distribution for the innovations of a dynamic model. This contributes to the existing literature by providing a test for Student’s t distributions in conditional mean and variance models with a parameter-free test statistic and, thus, a known asymptotic distribution, avoiding the use of more computationally costly resampling techniques such as bootstrapping. The specific expressions needed for the computation of the test statistic are obtained by adapting the generic test of Bai (2003), which is based on the Khmaladze (1988) transformation of the model residuals. Finally, in Chapter 3, the concept of Granger causality in Expected Shortfall (ES) is introduced, along with a testing procedure to detect this type of predictive relationship between return series. Granger causality in Expected Shortfall is here defined as the predictive ability of tail values of a series over future tail values of another series on average. This definition may help in analyzing whether past values of an asset in extreme risk affect future extreme risk values of another asset. The main contribution of this chapter is a test for detecting this type of causality, based on the test for Granger causality in VaR by Hong et al. (2009). An empirical application on financial institutions from different industries (banking, insurance, and diversified financials) is presented to analyze the risk spillovers in the US financial market. The contribution of this thesis to the field of financial econometrics focuses on the market risk of financial assets, both in its modeling through the metric known as Expected Shortfall suggested in the Basel III Accords and in its utility beyond capital requirements. The results highlight the importance of a good specification of the chosen distribution model for risk estimation - especially in high-risk assets such as cryptocurrencies - and a test is proposed to verify if the conditional distribution in parametric models used for risk predictions is or is not a Student’s t distribution. Finally, a Granger causality test in Expected Shortfall is proposed, which allows for studying risk propagation in tails of return distributions. The proposed test can be used to investigate interconnections within and between markets as a complement when evaluating systemic risk. Other potential applications include improving Expected Shortfall forecasts by including causing variables as regressors in estimations, studying the inclusion of certain asset pairs in the same portfolio based on how they interact in the riskiest situations, or constructing networks of extreme risk propagation. / Esta tesis doctoral ha sido financiada mediante una ayuda FPU por el Ministerio de Educación, Cultura y Deporte (FPU17/06227).
10

偏態預測:台灣加權指數報酬率之研究 / Predicting conditional skewness:Evidence from the return distribution of the Taiwan Stock Exchange Value-Weighted Index

李家昇 Unknown Date (has links)
此論文研究有什麼因子會影響台灣股票加權指數報酬率之偏態係數。過去的文獻顯示,交易量和報酬率為可能的因子。實證的結果確實發現,交易量和報酬率顯著地影響偏態係數。 / This study examines the determinants for conditional skewness of the return distribution of the Taiwan Stock Exchange Value-Weighted Index. Important driving factors that affect conditional skewness, based on the theory literature, include trading volumes and returns. To capture the skewness in the data, the family of time series model we consider focuses on the specifications of higher-order moments than mean and volatility that conventional models look at. With the specifications, we are able to test whether the factors, volumes and returns, can influence conditional skewnees of the return distribution. Our results suggest the significance of the factors using data from the Taiwan Stock Exchange Value-Weighted Index.

Page generated in 0.06 seconds