• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 1
  • 1
  • Tagged with
  • 9
  • 9
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Macromolecular Engineering: New Routes Towards the Synthesis of Well-??Defined Polyethers/Polyesters Co/Terpolymers with Different Architectures

Alamri, Haleema 18 May 2016 (has links)
The primary objective of this research was to develop a new and efficient pathway for well-defined multicomponent homo/co/terpolymers of cyclic esters/ethers using an organocatalytic approach with an emphasis on the macromolecular engineering aspects of the overall synthesis. Macromolecular engineering (as discussed in the first chapter) of homo/copolymers refers to the specific tailoring of these materials for achieving an easy and reproducible synthesis that results in precise molecular characteristics, i.e. molecular weight and polydispersity, as well as specific structure and end?group choices. Precise control of these molecular characteristics will provide access to new materials that can be used for pre-targeted purposes such as biomedical applications. Among the most commonly used engineering materials are polyesters (biocompatible and biodegradable) and polyethers (biocompatible), either as homopolymers or when or copolymers with linear structures. The ability to create non-linear structures, for example stars, will open new horizons in the applications of these important polymeric materials. The second part of this thesis describes the synthesis of aliphatic polyesters, particularly polycaprolactone and polylactide, using a metal-free initiator/catalyst system. A phosphazene base (t?BuP2) was used as the catalyst for the ring-opening copolymerization of ?-aprolactone (??CL) and L,Lactide (LLA) at room temperature with a variety of protic initiators in different solvents. These studies provided important information for the design of a metal-free route toward the synthesis of polyester?based (bio) materials. The third part of the thesis describes a novel route for the one?pot synthesis of polyether-b polyester block copolymers with either a linear or a specific macromolecular architecture. Poly (styrene oxide)?b?poly(caprolactone)?b?poly(L,lactide) was prepared using this method with the goal of synthesizing poly(styrene oxide)-based materials since this styrene oxide (SO) monomer has been less investigated than other well-known epoxide monomers. The new one?pot synthesis of polyether?b?polyester block copolymers allowed a high degree of control with respect to the molecular weight and molecular weight distribution. It also eliminates the need for a multi-step process in which the first block must be isolated and purified prior to its subsequent use as a macroinitiator for the second block. It is also worth noting that this approach is based primarily on the use of organocatalyst because this class of block copolymers has greater potential in biomedical and pharmaceutical applications and because organocatalysts are believed to be less toxic than their metallic counterparts. The fourth part of the thesis describes the extension of the scope of the newly developed catalyst?switching approach in the synthesis of different macromolecular architectures, with a special focus on styrene oxide as a monomer, which had not previously been explored either as a linear copolymer with other monomers (except with EO) or with a macromolecular architecture such as block star or mikto arm star. The results detailed in Chapter 4 demonstrate the validity of extending the newly developed strategy to the synthesis of a variety of polymers with different macromolecular architectures. Since organic catalysts (phoshazene bases) have been utilized in this work for the synthesis of polyethers and polyesters with the aim of alleviating the toxic properties associated with metal-based catalysts, it was necessary to investigate the toxicity of this class of organocatalyst since, until now, no evidence has appeared of any attempt to address this issue. The objective of the work presented in the fifth part of this thesis was therefore to assess whether this class of organocatalysts are safe with respect to human health and whether their structure and concentration are dependent on an evaluation of the level of cytotoxicity or on other parameters. Both the pure catalyst and the polymers synthesized using this class of catalysts were tested using a CKK?8 assay, which is a very well?known protocol for measuring cytotoxicity.
2

Biocatalytic resolution of substituted styrene oxides / Charl Alan Yeates

Yeates, Charl Alan January 2001 (has links)
Stereochemistry and chirality are arguably two of the most important subjects pertaining to the development of new pharmaceutical drugs. Since enantiomers have the potential to encompass different pharmacological effects in biological systems, both enantiomers have to be tested for pharmacological activity. Not only has obtaining these single enantiomers become crucial, but formulation of the pure enantiomer of a drug also has the potential to contain advantages for both pharmaceutical formulation and therapeutic effect. Epoxide hydrolase is an enzyme commonly found in nature that catalyses the hydrolysis of epoxides, resulting in the formation of the corresponding vicinal diol. Over the last few years a large amount of research has been completed on these enzymes from sources such as mammals, insects, bacteria and fungi. Micro-organisms especially have enjoyed ample attention because of their abundant supply. Recently it was found that certain yeasts contain this enzyme and have the ability to enantioselectively catalyse certain hydrolysis reactions. Styrene oxides are terminal epoxides that are, due to the reactivity of the epoxide ring, useful synthons in the organic synthesis of pharmaceutical products. The first objective of this project was to synthesize three nitro derivatives of styrene oxide namely para-, meta-, and ortho-nitrostyrene oxide. Al three products were obtained from the corresponding nitrophenacyl bromide in yields of 52%, 90% and 57% respectively. The second objective was lo find a suitable yeast slrain containing the epoxide hydrolase enzyme to enantioselectively hydrolyse the synthesised products and unsubstituted styrene oxide. A screening was completed during which 410 yeast strains from more than 44 genera were tested. Epoxide hydrolase activity was found to be widespread throughout the screened yeast domain, while the genera Candida, Debaryomyces, Pichia, Rhodosporidium, Rhodotorula and Trichosporon specifically were very successful in catalysing the hydrolysis of the substrates. Rhodosporidium toruloides UOFS Y-0471 and Rhodotorula glutinis UOFS Y-0653 were chosen for further studies because of their superior enantioselectivity. The final objective was to optimise these reactions in terms of pH, temperature and substrate concentration. It was found that a pH value of 7.2 and a temperature of 45’C yielded optimal enzyme activity. Increased temperatures (45’C), however, lead to a decrease in enantioselectivity and, in the case of R. toruloides together with the substrate puranitrostyrene oxide, reversed enantioselectivity. Lower temperatures (15’C) increased enantioselectivity, resulting in a remarkable improvement from a 10% yield of the single enantiomer (45’C) to a 35% yield. Surprisingly this temperature decrease had a very small affect upon the reaction time. / Thesis (M.Sc. (Pharmaceutical Chemistry)--Potchefstroom University for Christian Higher Education, 2002.
3

Biocatalytic resolution of substituted styrene oxides / Charl Alan Yeates

Yeates, Charl Alan January 2001 (has links)
Thesis (M.Sc. (Pharmaceutical Chemistry)--Potchefstroom University for Christian Higher Education, 2002.
4

Biocatalytic resolution of substituted styrene oxides / Charl Alan Yeates

Yeates, Charl Alan January 2001 (has links)
Stereochemistry and chirality are arguably two of the most important subjects pertaining to the development of new pharmaceutical drugs. Since enantiomers have the potential to encompass different pharmacological effects in biological systems, both enantiomers have to be tested for pharmacological activity. Not only has obtaining these single enantiomers become crucial, but formulation of the pure enantiomer of a drug also has the potential to contain advantages for both pharmaceutical formulation and therapeutic effect. Epoxide hydrolase is an enzyme commonly found in nature that catalyses the hydrolysis of epoxides, resulting in the formation of the corresponding vicinal diol. Over the last few years a large amount of research has been completed on these enzymes from sources such as mammals, insects, bacteria and fungi. Micro-organisms especially have enjoyed ample attention because of their abundant supply. Recently it was found that certain yeasts contain this enzyme and have the ability to enantioselectively catalyse certain hydrolysis reactions. Styrene oxides are terminal epoxides that are, due to the reactivity of the epoxide ring, useful synthons in the organic synthesis of pharmaceutical products. The first objective of this project was to synthesize three nitro derivatives of styrene oxide namely para-, meta-, and ortho-nitrostyrene oxide. Al three products were obtained from the corresponding nitrophenacyl bromide in yields of 52%, 90% and 57% respectively. The second objective was lo find a suitable yeast slrain containing the epoxide hydrolase enzyme to enantioselectively hydrolyse the synthesised products and unsubstituted styrene oxide. A screening was completed during which 410 yeast strains from more than 44 genera were tested. Epoxide hydrolase activity was found to be widespread throughout the screened yeast domain, while the genera Candida, Debaryomyces, Pichia, Rhodosporidium, Rhodotorula and Trichosporon specifically were very successful in catalysing the hydrolysis of the substrates. Rhodosporidium toruloides UOFS Y-0471 and Rhodotorula glutinis UOFS Y-0653 were chosen for further studies because of their superior enantioselectivity. The final objective was to optimise these reactions in terms of pH, temperature and substrate concentration. It was found that a pH value of 7.2 and a temperature of 45’C yielded optimal enzyme activity. Increased temperatures (45’C), however, lead to a decrease in enantioselectivity and, in the case of R. toruloides together with the substrate puranitrostyrene oxide, reversed enantioselectivity. Lower temperatures (15’C) increased enantioselectivity, resulting in a remarkable improvement from a 10% yield of the single enantiomer (45’C) to a 35% yield. Surprisingly this temperature decrease had a very small affect upon the reaction time. / Thesis (M.Sc. (Pharmaceutical Chemistry)--Potchefstroom University for Christian Higher Education, 2002.
5

Mass spectrometry of metallothionein adducts as candidate biomarkers of styrene oxide and 1-phenylpropylene oxide

Tarr, Sandra G. January 2005 (has links)
Thesis (M.S.)--West Virginia University, 2005. / Title from document title page. Document formatted into pages; contains vii, 44 p. : ill. (some col.). Includes abstract. Includes bibliographical references (p. 41-44).
6

Improving Yields and Productivity of Microbe-Catalyzed Production of Targeted Bio-Molecules using In-situ adsorption.

January 2014 (has links)
abstract: With the aid of metabolic pathways engineering, microbes are finding increased use as biocatalysts to convert renewable biomass resources into fine chemicals, pharmaceuticals and other valuable compounds. These alternative, bio-based production routes offer distinct advantages over traditional synthesis methods, including lower energy requirements, rendering them as more "green" and "eco-friendly". <italic>Escherichia coli</italic> has recently been engineered to produce the aromatic chemicals (S)-styrene oxide and phenol directly from renewable glucose. Several factors, however, limit the viability of this approach, including low titers caused by product inhibition and/or low metabolic flux through the engineered pathways. This thesis focuses on addressing these concerns using magnetic mesoporous carbon powders as adsorbents for continuous, in-situ product removal as a means to alleviate such limitations. Using process engineering as a means to troubleshoot metabolic pathways by continuously removing products, increased yields are achieved from both pathways. By performing case studies in product toxicity and reaction equilibrium it was concluded that each step of a metabolic pathway can be optimized by the strategic use of in-situ adsorption as a process engineering tool. / Dissertation/Thesis / Masters Thesis Chemical Engineering 2014
7

Synthesis of hectorites and saponites with microwaves and their application in catalysis and composites

Vicente Valverde, Isabel 25 February 2011 (has links)
Las esmectitas como hectorita o saponita, son silicatos laminares. Tienen múltiples aplicaciones (catálisis, nanocomposites, adsorbentes) e interesa tener un material reproducible y sin impurezas. Los métodos convencionales de síntesis comportan tratamientos largos o a altas temperaturas. La introducción del microondas puede disminuir ambos. El objetivo de esta tesis es estudiar la síntesis de hectorita y saponita con microondas y su aplicación como soportes catalíticos de Ni en la hidrogenación de óxido de estireno para la obtención de 2-feniletanol (componente principal de la esencia de rosas) y en la preparación de composites con poliuretano. Se obtienen hectoritas y saponitas reproducibles. Cuando se emplean como soportes de catalizadores de Ni se obtienen conversión y selectividad total hacia el 2-feniletanol. Cuando se utilizan las arcillas obtenidas en preparación de composites sus propiedades son comparables a los de la bibliografía. / Smectites like hectorite or saponite, are phyllosilicates. They can be applied for many purposes (catalysis, nanocomposites, adsorbents) but a reproducible, pure material is necessary. Classical methods of synthesis involve long synthesis times at high temperatures. The use of microwaves can be an interesting alternative. The scope of this thesis is to study the synthesis of hectorites and saponites with microwaves and their application as supports of Ni catalysts in the hydrogenation of styrene oxide to obtain 2-phenylethanol (main component of rose oil) and in the preparation of composites with polyurethane. We obtained reproducible hectorites and saponites. When used as supports of Ni catalysts we obtained total conversion and selectivity to 2-phenyethanol. When obtained clays were used in the preparation of polyurethane composites, their properties were comparables to those of the bibliography
8

Etablierung und Optimierung der Error-Prone-PCR und eines Aktivitätsscreenings für Styrol-Monooxygenasen

Born, Ariane 18 November 2011 (has links) (PDF)
Styrol-Monooxygenasen (SMOs) spielen im bakteriellen Abbau von Styrol eine wichtige Rolle. Sie epoxidieren den Kohlenwasserstoff zu (S)-Styroloxid und waren bis vor kurzem vor allem aus Gram-negativen Vertretern wie Pseudomonaden bekannt. Das Grampositive nocardioforme Bodenbakterium Rhodococcus opacus 1CP kann Styrol als Energie- und Kohlenstoffquelle nutzen und verfügt über zwei Typen von SMOs. Neben StyA2B, einer fusionierten FAD:NADH-Oxidoreduktase (StyB) und Monooxygenase (StyA2) findet sich eine weitere Monooxygenase StyA1, deren Gen direkt stromaufwärts zu styA2B lokalisiert ist. Zusätzlich zum natürlichen Fusionsprotein StyA2B gelang kürzlich die Konstruktion künstlicher Fusionen StyAL1B und StyAL2B aus Pseudomonas fluorescens ST. Um sowohl StyA1/StyA2B als auch die künstlichen Fusionen StyAL1B und StyAL2B für eine biotechnologische Anwendung nutzen zu können, wurde im Rahmen dieser Arbeit angestrebt, ihre spezifische Oxygenierungsaktivität (StyA1/StyA2B: 0,24 U/mg) mit Hilfe der error prone PCR zu erhöhen. Um Veränderungen der katalytischen Aktivität in einer großen Zahl von Mutanten schnell zu erkennen, ist ein einfacher Screeningtest erforderlich. Die Fähigkeit von SMOs zur Oxidation von Indol zu blauem Indigo bietet diese Möglichkeit. Allerdings ist hierfür die Expression löslicher Proteine eine wesentliche Voraussetzung. Versuche zur Veränderung der Gene styA2B und styA1A2B mit Hilfe eines kommerziellen error prone PCR Kits lieferten ca. 300 bis 1.200 mutmaßlich veränderte Klone, welche jedoch keinerlei Aktivität für den Indolumsatz zeigten. Als Ursache wurde eine Expression der Proteine in Form inaktiver Inclusion Bodies vermutet. Die Fusionsproteine StyAL1B und StyAL2B bilden lösliches Protein, welche Indol zum blauen Farbstoff Indigo umsetzen. Verschiedene Kultivierungsbedingungen wurden auf den Umsatz von Indol untersucht. Dabei wurde erkannt, dass die Klone sich nicht identisch bezüglich ihrer Proteinlöslichkeit verhalten. Mit Hilfe dieser Ergebnisse wurde ein Test für das Aktivitätsscreening von Styrol-Monooxygenasen auf Platte entwickelt. Die Erhöhung der NaCl-Konzentration im Medium steigerte die Indoloxidation, welche sich jedoch durch zusätzliche physiologisch Faktoren schwer beeinflussen lassen. Auch für die Fusionsproteine erfolgte die Durchführung einer error prone PCR. Der Schritt der error prone PCR stellte kein Problem dar, jedoch die Einbindung des veränderten Genfragmentes in den Vektor, beziehungsweise dessen Transformation in E. coli. Alternative Strategien, wie die Nutzung alternativer DNA Polymerasen und eines konventionellen Konzepts, bei dem veränderte Gene in geschnittene Expressionsvektoren ligiert werden, führte zu keinen detektierbaren Klonen. Die Kultivierung von identischen Klonen auf Festmedium wirkte sich aufgrund nicht näher identifizierter Einflüsse auf das Verhalten bezüglich der Indoloxidation sehr unterschiedlich aus. Um diese Einflüsse zu minimieren, erfolgte die Untersuchung des Systems in einer Flüssigkultur. Im Blickpunkt stand hierbei die Indigoproduktion von E. coli BL21 (pET_StyAL2B) die in Abhängigkeit der optischen Dichte der Kultur untersucht wurde. / Styrene monooxygenases (SMOs) play an important role in the bacterial degradation of styrene. They epoxidize the hydrocarbon highly enantioselective to (S)-styrene oxide. Most of the styrene monooxygenases known so far were identified in Gram-negative microorganisms like pseudomonads. Rhodococcus opacus 1CP, a Gram-positive nocardioform actinobacterium, which uses styrene as energy and carbon source was recently found to possess a novel type of SMO, StyA2B. This protein represents a natural fusion between an FAD:NADH oxidoreductase (StyB) and a single monooxygenase subunit (StyA2) and might act in combination with another single oxygenase StyA1 in strain 1CP. Two artificial analogs to StyA2B, designated StyAL1B and StyAL2B, were recently prepared by a fusion of styA and styB of Pseudomonas fluorescens ST and both showed oxygenating activity. For StyA1/StyA2B as well as the artificial fusion proteins StyAL1B and StyAL2B, it was tried to enhance the specific oxygenation activity in order to support their biotechnological applicability. The method of error prone PCR was used for that purpose. In order to identify favorable modifications with increased catalytic activity from a high number of mutants, an easy and simple screening test is necessary. Therefore, it is reasonable to use the ability of SMOs to oxidize indole to the blue dye indigo. However, the expression of SMOs as soluble proteins is an important requirement for any activity screening. Attempts to modify the genes styA2B and styA1/styA2B by means of a commercial error prone PCR kit yielded 300 to 1,200 potential mutants. Unfortunately, none of the obtained colonies showed any indole-oxidizing activity and the formation of insoluble inclusion bodies was assumed to be a likely explanation. In contrast to StyA2B and StyA1, recombinant expression of the artificial fused SMOs StyAL1B und StyAL2B should yield detectable amounts of active proteins. In fact, cultivation of clones expressing both types of proteins showed a blue coloration. Since the coloration of clones from one single solid medium evolved in a non-uniform manner, cultivation conditions were varied in order to identify factors which promote a more uniform tendency for indole oxidation. Although a high NaCl concentration in the medium was shown to favor indole oxidation, the latter one seems to be influenced by additional physiological factors, hardly to control. For the artificially fused proteins an error prone PCR was carried out, too. Although the initial step of mutagenic PCR was found to be successful, completing the vector system by a second ll-up PCR reaction failed. Alternative strategies like the usage of alternative DNA polymerases as well as a conventional cloning approach of various genes into a digested expression vector did not lead to detectable clones. The cultivation of identical clones on petri dishes provided no uniform tendency for indole oxidation and thus did not allow the reliable comparison of mutants in respect of their specific SMO activities. Cultivation of mutants in liquid medium should lead to more reproducible conditions and for that purpose a method was successfully established to quantify indigo formation and cell density.
9

Etablierung und Optimierung der Error-Prone-PCR und eines Aktivitätsscreenings für Styrol-Monooxygenasen

Born, Ariane 01 July 2011 (has links)
Styrol-Monooxygenasen (SMOs) spielen im bakteriellen Abbau von Styrol eine wichtige Rolle. Sie epoxidieren den Kohlenwasserstoff zu (S)-Styroloxid und waren bis vor kurzem vor allem aus Gram-negativen Vertretern wie Pseudomonaden bekannt. Das Grampositive nocardioforme Bodenbakterium Rhodococcus opacus 1CP kann Styrol als Energie- und Kohlenstoffquelle nutzen und verfügt über zwei Typen von SMOs. Neben StyA2B, einer fusionierten FAD:NADH-Oxidoreduktase (StyB) und Monooxygenase (StyA2) findet sich eine weitere Monooxygenase StyA1, deren Gen direkt stromaufwärts zu styA2B lokalisiert ist. Zusätzlich zum natürlichen Fusionsprotein StyA2B gelang kürzlich die Konstruktion künstlicher Fusionen StyAL1B und StyAL2B aus Pseudomonas fluorescens ST. Um sowohl StyA1/StyA2B als auch die künstlichen Fusionen StyAL1B und StyAL2B für eine biotechnologische Anwendung nutzen zu können, wurde im Rahmen dieser Arbeit angestrebt, ihre spezifische Oxygenierungsaktivität (StyA1/StyA2B: 0,24 U/mg) mit Hilfe der error prone PCR zu erhöhen. Um Veränderungen der katalytischen Aktivität in einer großen Zahl von Mutanten schnell zu erkennen, ist ein einfacher Screeningtest erforderlich. Die Fähigkeit von SMOs zur Oxidation von Indol zu blauem Indigo bietet diese Möglichkeit. Allerdings ist hierfür die Expression löslicher Proteine eine wesentliche Voraussetzung. Versuche zur Veränderung der Gene styA2B und styA1A2B mit Hilfe eines kommerziellen error prone PCR Kits lieferten ca. 300 bis 1.200 mutmaßlich veränderte Klone, welche jedoch keinerlei Aktivität für den Indolumsatz zeigten. Als Ursache wurde eine Expression der Proteine in Form inaktiver Inclusion Bodies vermutet. Die Fusionsproteine StyAL1B und StyAL2B bilden lösliches Protein, welche Indol zum blauen Farbstoff Indigo umsetzen. Verschiedene Kultivierungsbedingungen wurden auf den Umsatz von Indol untersucht. Dabei wurde erkannt, dass die Klone sich nicht identisch bezüglich ihrer Proteinlöslichkeit verhalten. Mit Hilfe dieser Ergebnisse wurde ein Test für das Aktivitätsscreening von Styrol-Monooxygenasen auf Platte entwickelt. Die Erhöhung der NaCl-Konzentration im Medium steigerte die Indoloxidation, welche sich jedoch durch zusätzliche physiologisch Faktoren schwer beeinflussen lassen. Auch für die Fusionsproteine erfolgte die Durchführung einer error prone PCR. Der Schritt der error prone PCR stellte kein Problem dar, jedoch die Einbindung des veränderten Genfragmentes in den Vektor, beziehungsweise dessen Transformation in E. coli. Alternative Strategien, wie die Nutzung alternativer DNA Polymerasen und eines konventionellen Konzepts, bei dem veränderte Gene in geschnittene Expressionsvektoren ligiert werden, führte zu keinen detektierbaren Klonen. Die Kultivierung von identischen Klonen auf Festmedium wirkte sich aufgrund nicht näher identifizierter Einflüsse auf das Verhalten bezüglich der Indoloxidation sehr unterschiedlich aus. Um diese Einflüsse zu minimieren, erfolgte die Untersuchung des Systems in einer Flüssigkultur. Im Blickpunkt stand hierbei die Indigoproduktion von E. coli BL21 (pET_StyAL2B) die in Abhängigkeit der optischen Dichte der Kultur untersucht wurde.:Eidesstattliche Erklärung II Danksagung III Zusammenfassung IV Abstract VI Abbildungsverzeichnis XI Tabellenverzeichnis XIII Abkürzungsverzeichnis XIV 1 Einleitung 1 1.1 Styrol - ein Produkt der Industrie . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Styrol-Monooxygenasen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.2.1 Abbauwege von Styrol . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.2.2 Struktur, Vorkommen und Eigenschaften klassischer Zweikomponenten Styrol-Monooxygenasen . . . . . . . . . . . . . . . . . . . . 4 1.2.3 Das neuartige Styrol-Monooxygenase-System StyA1/StyA2B aus Rhodococcus opacus 1CP . . . . . . . . . . . . . . . . . . . . . . . . 6 1.2.4 Künstlich verlinkte SMO aus Pseudomonas uorescens ST . . . . . 7 1.2.5 Biotechnologischer Einsatz von Styrol-Monooxygenasen . . . . . . . 8 1.3 Strategien des Protein-Engineering . . . . . . . . . . . . . . . . . . . . . . 9 1.3.1 Arbeitsmethoden zur Veränderung von DNA . . . . . . . . . . . . . 9 1.3.2 Error prone PCR . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 1.4 Arbeitsziele . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2 Material und Methoden 13 2.1 Bakterienstämme und Plasmide . . . . . . . . . . . . . . . . . . . . . . . . 13 2.2 Kultivierungsmedien und -bedingungen . . . . . . . . . . . . . . . . . . . . 14 2.2.1 Kultivierungsmedien . . . . . . . . . . . . . . . . . . . . . . . . . . 14 2.2.2 Kultivierungstemperaturen . . . . . . . . . . . . . . . . . . . . . . . 14 2.3 Polymerase-Kettenreaktion (PCR) . . . . . . . . . . . . . . . . . . . . . . 16 2.3.1 Primer und Primerdesign . . . . . . . . . . . . . . . . . . . . . . . . 16 2.3.2 Standard-PCR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 2.4 Fehlerbehaftete Polymerase-Kettenreaktion (epPCR) . . . . . . . . . . . . 17 2.4.1 Synthese der mutagenen Megaprimer . . . . . . . . . . . . . . . . . 18 2.4.2 EZClone Reaktion . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.4.3 Transformation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.4.4 Modi zierung des Protokolls des EZClone Reaktion Schrittes . . . . 20 2.5 Aufreinigung von PCR-Produkten aus der Lösung . . . . . . . . . . . . . . 20 2.6 TAE-Agarose-Gelelektrophorese . . . . . . . . . . . . . . . . . . . . . . . . 20 2.7 DNA-Extraktion aus Agarosegelen . . . . . . . . . . . . . . . . . . . . . . 21 2.8 Bestimmung der DNA-Konzentration . . . . . . . . . . . . . . . . . . . . . 21 2.9 Restriktionsverdau von DNA . . . . . . . . . . . . . . . . . . . . . . . . . . 21 2.10 Ligation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 2.11 Herstellung von kompetenten Zellen (E.coli DH5ff, E. coli BL21) . . . . . 23 2.11.1 Chemisch kompetente Zellen nach der CaCl2-Methode (42) . . . . . 23 2.11.2 TOP10 chemischkompetente Zellen . . . . . . . . . . . . . . . . . . 23 2.12 Transformation nach der Hitzeschock-Methode (19) . . . . . . . . . . . . . 24 2.13 Plasmidpräparation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 2.14 Bestimmung der Indigobildung durch Klone mit mutmaÿlicher SMO-Aktivität 24 2.14.1 Abschätzung der Indigobildung durch Augenschein . . . . . . . . . 25 2.14.2 Quanti zierung der Indigobildung mittels UV/Vis-Spektrophotometrie 25 2.14.3 Quanti zierung der Indigobildung aus Flüssigkulturen . . . . . . . . 26 3 Ergebnisse 27 3.1 Versuche der error prone PCR von StyA2B aus Rhodococcus opacus 1CP . 27 3.1.1 Isolation von Templat-DNA und Durchführung der error prone PCR 28 3.1.2 Screening von Transformanden auf Fähigkeit zur Indol-Oxidation . 29 3.1.3 Herstellung und Aktivitätsscreening von E. coli DH5ff pET_StyA2B 30 3.2 Versuche der error prone PCR von styA1/styA2B aus Rhodococcus opacus 1CP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 3.2.1 Durchführung der error prone PCR und Aktivitätsscreening von StyA1/StyA2B in pBluescript KS(+) . . . . . . . . . . . . . . . . . 31 3.2.2 Durchführung des Aktivitätsscreening von StyA1/StyA2B in pET16bP 32 3.3 Fusionsproteine StyAL1B und StyAL2B aus Pseudomonas uorescens ST . 33 3.3.1 Optimierung der Zusammensetzung des LB-Mediums für das Aktivitätsscreenings von pET_StyAL2B in E. coli BL21 nach einer Transformation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 3.3.2 Ein uss der Belüftung auf die Neigung von E. coli BL21 (pET_StyAL2B) Kolonien zur Oxidation von Indol . . . . . . . . . . . . . . . . . . . 38 3.3.3 Bestimmung der Indigobildung mittels UV/Vis-Spektroskopie . . . 40 3.3.4 Zeitliche Entwicklung der Indigokonzentration einer Flüssigkultur von E. coli BL21 (pET_StyAL2B) . . . . . . . . . . . . . . . . . . 42 3.3.5 Error prone PCR von pET_StyAL2B mit Gene Morph II EZ Clone Kit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 3.3.6 Error prone PCR nach der klassischen Methode mit pET_StyAL1B und pET_StyAL2B . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 4 Diskussion der Ergebnisse 49 4.1 Die error prone PCR als attraktive Methodik zur Optimierung von Styrol- Monooxygenasen hinsichtlich katalytischer Eigenschaften . . . . . . . . . . 49 4.2 Der Aktivitätsnachweis als mutmaÿlich limitierender Schritt in der Modi- zierung von StyA2B und StyA1/StyA2B mit Hilfe der error prone PCR . 51 4.3 Die künstlich fusionierten Styrol-Monooxygenasen StyAL2B und StyAL1B erlauben ein Aktivitätsscreening auf Platte . . . . . . . . . . . . . . . . . . 53 4.4 Die Entwicklung einer Methodik zur Quanti zierung der spezi schen Indigobildung eines Expressionsklons der Styrol-Monooxygenase StyAL2B . . . 58 4.5 Fehleranalyse zur error prone PCR . . . . . . . . . . . . . . . . . . . . . . 59 4.5.1 Fehler in der klassischen error prone PCR für pET_StyAL1B und pET_StyAL2B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 Literaturverzeichnis 65 / Styrene monooxygenases (SMOs) play an important role in the bacterial degradation of styrene. They epoxidize the hydrocarbon highly enantioselective to (S)-styrene oxide. Most of the styrene monooxygenases known so far were identified in Gram-negative microorganisms like pseudomonads. Rhodococcus opacus 1CP, a Gram-positive nocardioform actinobacterium, which uses styrene as energy and carbon source was recently found to possess a novel type of SMO, StyA2B. This protein represents a natural fusion between an FAD:NADH oxidoreductase (StyB) and a single monooxygenase subunit (StyA2) and might act in combination with another single oxygenase StyA1 in strain 1CP. Two artificial analogs to StyA2B, designated StyAL1B and StyAL2B, were recently prepared by a fusion of styA and styB of Pseudomonas fluorescens ST and both showed oxygenating activity. For StyA1/StyA2B as well as the artificial fusion proteins StyAL1B and StyAL2B, it was tried to enhance the specific oxygenation activity in order to support their biotechnological applicability. The method of error prone PCR was used for that purpose. In order to identify favorable modifications with increased catalytic activity from a high number of mutants, an easy and simple screening test is necessary. Therefore, it is reasonable to use the ability of SMOs to oxidize indole to the blue dye indigo. However, the expression of SMOs as soluble proteins is an important requirement for any activity screening. Attempts to modify the genes styA2B and styA1/styA2B by means of a commercial error prone PCR kit yielded 300 to 1,200 potential mutants. Unfortunately, none of the obtained colonies showed any indole-oxidizing activity and the formation of insoluble inclusion bodies was assumed to be a likely explanation. In contrast to StyA2B and StyA1, recombinant expression of the artificial fused SMOs StyAL1B und StyAL2B should yield detectable amounts of active proteins. In fact, cultivation of clones expressing both types of proteins showed a blue coloration. Since the coloration of clones from one single solid medium evolved in a non-uniform manner, cultivation conditions were varied in order to identify factors which promote a more uniform tendency for indole oxidation. Although a high NaCl concentration in the medium was shown to favor indole oxidation, the latter one seems to be influenced by additional physiological factors, hardly to control. For the artificially fused proteins an error prone PCR was carried out, too. Although the initial step of mutagenic PCR was found to be successful, completing the vector system by a second ll-up PCR reaction failed. Alternative strategies like the usage of alternative DNA polymerases as well as a conventional cloning approach of various genes into a digested expression vector did not lead to detectable clones. The cultivation of identical clones on petri dishes provided no uniform tendency for indole oxidation and thus did not allow the reliable comparison of mutants in respect of their specific SMO activities. Cultivation of mutants in liquid medium should lead to more reproducible conditions and for that purpose a method was successfully established to quantify indigo formation and cell density.:Eidesstattliche Erklärung II Danksagung III Zusammenfassung IV Abstract VI Abbildungsverzeichnis XI Tabellenverzeichnis XIII Abkürzungsverzeichnis XIV 1 Einleitung 1 1.1 Styrol - ein Produkt der Industrie . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Styrol-Monooxygenasen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.2.1 Abbauwege von Styrol . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.2.2 Struktur, Vorkommen und Eigenschaften klassischer Zweikomponenten Styrol-Monooxygenasen . . . . . . . . . . . . . . . . . . . . 4 1.2.3 Das neuartige Styrol-Monooxygenase-System StyA1/StyA2B aus Rhodococcus opacus 1CP . . . . . . . . . . . . . . . . . . . . . . . . 6 1.2.4 Künstlich verlinkte SMO aus Pseudomonas uorescens ST . . . . . 7 1.2.5 Biotechnologischer Einsatz von Styrol-Monooxygenasen . . . . . . . 8 1.3 Strategien des Protein-Engineering . . . . . . . . . . . . . . . . . . . . . . 9 1.3.1 Arbeitsmethoden zur Veränderung von DNA . . . . . . . . . . . . . 9 1.3.2 Error prone PCR . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 1.4 Arbeitsziele . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2 Material und Methoden 13 2.1 Bakterienstämme und Plasmide . . . . . . . . . . . . . . . . . . . . . . . . 13 2.2 Kultivierungsmedien und -bedingungen . . . . . . . . . . . . . . . . . . . . 14 2.2.1 Kultivierungsmedien . . . . . . . . . . . . . . . . . . . . . . . . . . 14 2.2.2 Kultivierungstemperaturen . . . . . . . . . . . . . . . . . . . . . . . 14 2.3 Polymerase-Kettenreaktion (PCR) . . . . . . . . . . . . . . . . . . . . . . 16 2.3.1 Primer und Primerdesign . . . . . . . . . . . . . . . . . . . . . . . . 16 2.3.2 Standard-PCR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 2.4 Fehlerbehaftete Polymerase-Kettenreaktion (epPCR) . . . . . . . . . . . . 17 2.4.1 Synthese der mutagenen Megaprimer . . . . . . . . . . . . . . . . . 18 2.4.2 EZClone Reaktion . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.4.3 Transformation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.4.4 Modi zierung des Protokolls des EZClone Reaktion Schrittes . . . . 20 2.5 Aufreinigung von PCR-Produkten aus der Lösung . . . . . . . . . . . . . . 20 2.6 TAE-Agarose-Gelelektrophorese . . . . . . . . . . . . . . . . . . . . . . . . 20 2.7 DNA-Extraktion aus Agarosegelen . . . . . . . . . . . . . . . . . . . . . . 21 2.8 Bestimmung der DNA-Konzentration . . . . . . . . . . . . . . . . . . . . . 21 2.9 Restriktionsverdau von DNA . . . . . . . . . . . . . . . . . . . . . . . . . . 21 2.10 Ligation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 2.11 Herstellung von kompetenten Zellen (E.coli DH5ff, E. coli BL21) . . . . . 23 2.11.1 Chemisch kompetente Zellen nach der CaCl2-Methode (42) . . . . . 23 2.11.2 TOP10 chemischkompetente Zellen . . . . . . . . . . . . . . . . . . 23 2.12 Transformation nach der Hitzeschock-Methode (19) . . . . . . . . . . . . . 24 2.13 Plasmidpräparation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 2.14 Bestimmung der Indigobildung durch Klone mit mutmaÿlicher SMO-Aktivität 24 2.14.1 Abschätzung der Indigobildung durch Augenschein . . . . . . . . . 25 2.14.2 Quanti zierung der Indigobildung mittels UV/Vis-Spektrophotometrie 25 2.14.3 Quanti zierung der Indigobildung aus Flüssigkulturen . . . . . . . . 26 3 Ergebnisse 27 3.1 Versuche der error prone PCR von StyA2B aus Rhodococcus opacus 1CP . 27 3.1.1 Isolation von Templat-DNA und Durchführung der error prone PCR 28 3.1.2 Screening von Transformanden auf Fähigkeit zur Indol-Oxidation . 29 3.1.3 Herstellung und Aktivitätsscreening von E. coli DH5ff pET_StyA2B 30 3.2 Versuche der error prone PCR von styA1/styA2B aus Rhodococcus opacus 1CP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 3.2.1 Durchführung der error prone PCR und Aktivitätsscreening von StyA1/StyA2B in pBluescript KS(+) . . . . . . . . . . . . . . . . . 31 3.2.2 Durchführung des Aktivitätsscreening von StyA1/StyA2B in pET16bP 32 3.3 Fusionsproteine StyAL1B und StyAL2B aus Pseudomonas uorescens ST . 33 3.3.1 Optimierung der Zusammensetzung des LB-Mediums für das Aktivitätsscreenings von pET_StyAL2B in E. coli BL21 nach einer Transformation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 3.3.2 Ein uss der Belüftung auf die Neigung von E. coli BL21 (pET_StyAL2B) Kolonien zur Oxidation von Indol . . . . . . . . . . . . . . . . . . . 38 3.3.3 Bestimmung der Indigobildung mittels UV/Vis-Spektroskopie . . . 40 3.3.4 Zeitliche Entwicklung der Indigokonzentration einer Flüssigkultur von E. coli BL21 (pET_StyAL2B) . . . . . . . . . . . . . . . . . . 42 3.3.5 Error prone PCR von pET_StyAL2B mit Gene Morph II EZ Clone Kit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 3.3.6 Error prone PCR nach der klassischen Methode mit pET_StyAL1B und pET_StyAL2B . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 4 Diskussion der Ergebnisse 49 4.1 Die error prone PCR als attraktive Methodik zur Optimierung von Styrol- Monooxygenasen hinsichtlich katalytischer Eigenschaften . . . . . . . . . . 49 4.2 Der Aktivitätsnachweis als mutmaÿlich limitierender Schritt in der Modi- zierung von StyA2B und StyA1/StyA2B mit Hilfe der error prone PCR . 51 4.3 Die künstlich fusionierten Styrol-Monooxygenasen StyAL2B und StyAL1B erlauben ein Aktivitätsscreening auf Platte . . . . . . . . . . . . . . . . . . 53 4.4 Die Entwicklung einer Methodik zur Quanti zierung der spezi schen Indigobildung eines Expressionsklons der Styrol-Monooxygenase StyAL2B . . . 58 4.5 Fehleranalyse zur error prone PCR . . . . . . . . . . . . . . . . . . . . . . 59 4.5.1 Fehler in der klassischen error prone PCR für pET_StyAL1B und pET_StyAL2B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 Literaturverzeichnis 65

Page generated in 0.0398 seconds