• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 48
  • 6
  • 6
  • 1
  • 1
  • Tagged with
  • 67
  • 19
  • 18
  • 16
  • 12
  • 11
  • 10
  • 10
  • 8
  • 8
  • 7
  • 7
  • 7
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Soil Organic Matter Dynamics and Methane Fluxes at the Forest – Tundra Ecotone in Fennoscandia

Sjögersten, Sofie January 2003 (has links)
This thesis presents results from several studies that have focused on the carbon and nutrient dynamics in soils at the forest – tundra ecotone in Fennoscandia. The main objectives of the study were: (i) to investigate the links between the physical environment, above-ground vegetation communities, soil carbon storage, nutrient status and the chemical composition of the soil organic matter (SOM), and (ii) to quantify trace gas fluxes (methane and carbon dioxide) between mesic soils and the atmosphere. Four main field areas spanning an 8 degree latitudinal gradient were established at the ecotone in 1998 and studied for four years. In addition to the natural gradients we also established a warming treatment. Decomposition rates (i.e. carbon dioxide efflux and litter decomposition) were higher at our forest sites. This was linked principally to the more favourable physical environment at the forest sites, rather than to SOM quality, despite some indications of higher SOM quality at forest sites based upon conventional chemical analysis and 13C NMR techniques. Tundra soils stored large amounts of potentially labile carbon that could readily be accessed by microorganisms when transferred to a forest environment. The interrelation between increased soil temperature and reduced soil moisture content is likely to moderate the response of decomposition rates to increased temperatures. Generally, these mesic soils showed net methane uptake from the atmosphere, which was enhanced by the warming treatment. No differences between forest or tundra soils could be detected. The major conclusions presented here are that (1) soil carbon storage is likely to be reduced if mountain birch forest replaces tundra heath and (2), methane uptake in mesic soils in the Fennoscandian mountains represents a negative feedback to further environmental change in a warmer climate.
22

Phytoplankton dynamics in the northeast subarctic Pacific during the 1998 El Niño, the 1999 La Niña and 2000 with special consideration to the role of coccolithophores and diatoms

Lipsen, Michael Simon 05 1900 (has links)
Phytoplankton dynamics and chemical characteristics of the euphotic zone were measured from 1998-2000 (an El Niño/La Niña cycle) at the 5 major stations along Line P. Near-shelf and offshore stations exhibited low seasonality in chlorophyll and moderate seasonality in particulate organic carbon (POC) production. During the 1998 El Niño, June was characterized by low chlorophyll and POC productivity due to nitrate depletion. In contrast, during the 1999 La Niña, and in 2000, higher POC productivity and nitrate occurred in June. During 1999, chlorophyll and POC productivity were similar to 1998 in late summer. Near-shelf biomass was highest in June and lowest in Feb. for the near-shelf stations. High nitrate, low chlorophyll (HNLC) stations had the highest chlorophyll in Feb. followed by June. The coccolithophore assemblage was usually numerically dominated by Emiliania huxleyi, particularly in June. Along the transect, coccolithophore abundance was much higher in June during the 1998 El Niño than in the 1999 La Niña, with Aug./Sept. abundance of both years being very low. Higher abundances were measured along the transect in June and the late summer of 2000 with sporadic ‘blooms’ of >1000 cells ml⁻¹ at some stations. Particulate inorganic carbon (PIC) production was high along the transect during June 1998, and low during both winters, June 1999 and during late summers of 1998 and 1999. There was an increase in diatom biomass and >20 µm POC production during the 1998 El Niño, specifically in the farthest offshore HNLC stations, yet diatoms were rarely found to dominate total phytoplankton biomass or production. However, there were some sporadic examples of anomalously high diatom biomass (carbon and abundance) as well as >20 µm POC production, specifically at P12 in Aug./Sept 2000. The same major diatom species were found throughout Line P (near-shelf, P16, and HNLC). Integrated silica production measured by ³²Si ranged from 0.2 to 4.7 mmol Si m⁻² d⁻¹ between 1999-2000. Silicic acid and nitrate were never limiting at all stations in Feb. and generally increased in concentration along Line P during all seasons.
23

Quantifying CO2 emissions from lakes and ponds in a large subarctic catchment

Salimi, Shokoufeh January 2013 (has links)
Quantifying carbon emissions of water bodies at regional scale is required as recent studies revealed their contribution in carbon cycling is significant. This demands to scale up water bodies carbon emissions from local to regional scale using as accurate approach as possible. In this study data of carbon (CO2-C) fluxes for 80 sampled lakes were used to scale up to more than 3000 lakes and ponds over the catchment. The most appropriate method for upscaling was the one in which two factors of water body size and location (altitude) were involved and the uncertainties were quantified in an advanced approach (Monte Carlo model). Based on the estimates obtained in this method, the annual carbon emission from all water bodies (~ 500 km2) was about 2900 ton C yr-1 . About 62% of this annual emission was related to the large lake Torneträsk (334 km2) and another 38% to all other lakes and ponds (166 km2). Water bodies in subalpine region dominated (90%) total water bodies area and were the major contributor (97%) to the total carbon emissions of all water bodies. The remaining small contribution (3%) was for water bodies in the alpine region, which contains only 10% of total water bodies area. These data indicate that all water bodies smaller than the large lake Torneträsk especially the ones in the subalpine region have considerable contribution to the annual carbon emission of all water bodies. Considering water body size and altitude factors in the advanced upscaling method was appropriate to obtain accurate estimates.
24

Fort Selkirk: Early Contact Period Interaction Between the Northern Tutchone and the Hudson's Bay Company in Yukon

Castillo, Victoria E. Unknown Date
No description available.
25

Eddy covariance measurements of methane flux in a subarctic fen with emphasis on spring-melt period

Hanis, Krista L. 10 September 2010 (has links)
Reliable determinations of ecosystem scale fluxes of net carbon (C) and greenhouse gases for northern peatland ecosystems are of great value to determine the impact of soil warming and altered precipitation on emissions. Additionally, few studies have been performed which measure the C fluxes, particularly methane flux (FCH4), during the spring melt and fall freeze up periods, therefore making it difficult to provide adequate annual C estimates from northern peatland ecosystems. This study aimed to determine ecosystem scale FCH4 from a eutrophic Subarctic fen at Churchill, Manitoba (58°45'N 94°4'W), to understand (a) seasonal trends over two consecutive growing seasons,(b) if over-winter stored CH4 was released as a pulse during the spring-melt period, and (c) soil temperature - FCH4 relations for modelling FCH4 over the spring-melt period. An ecosystem scale methane (CH4) and carbon dioxide (CO2) flux measurement system using the eddy covariance (EC) technique was used from late-June to mid-October of 2008 and early-June to late-September of 2009, with focus on the spring-melt period of late-May to mid-July of 2009. The EC flux measurement system consisted of a closed-path RMT-200 Fast Methane Analyzer (Los Gatos Research Inc.) along with a LI-7500 open-path CO2/H2O gas analyzer (LI-COR Biosci.) and a CSAT3 3-dimensional sonic anemometer (Campbell Sci.). The system was powered by a combination of wind, solar, and gas electric generation. The EC flux measurement system provided seasonal FCH4 values of 0 – 90 nmol CH4 m-2 s-1, similar to previous studies in Subarctic and Arctic peatlands which incorporated the EC technique. A melt period CH4 emission burst was not observed, rather a gradual increase in emission over the spring period. Modelled FCH4 using a temperature-response curve relationship with soil temperature at 5 cm depth over the spring-melt period (May 30 – July 19, 2009) showed the fen to be a net source of CH4, of 1.4 mmol m-2 CO2 equivalent.
26

Holocene and Recent Paleoclimate Investigations Using Carbon and Nitrogen Isotopes from Bulk Sediment of Two Subarctic Lakes, Central Northwest Territories

Griffith, Fritz 21 November 2013 (has links)
The Tibbitt-to-Contwoyto Winter Ice Road (TCWR) is the sole overland route servicing diamond mines north of Yellowknife, Northwest Territories (NWT), Canada. The road is 568 km long, 85% of which extends over frozen lakes. As such, its operational season is highly dependent upon the length of the winter season. This was exemplified in 2006, when an El Niño event caused an unusually short ice road season and resulted in a costly reduction of shipments to the mines. For future use and development of the TCWR, a comprehensive understanding of past regional climate variability is required. This study is an integral component of a larger-scale study designed to develop a comprehensive database of high-resolution paleoclimate data for the NWT, using a variety of proxies. As part of the larger study, freeze cores were taken from numerous lakes along the TCWR and sliced at 1-mm intervals using a custom-designed sledge microtome. Bulk 13C and 15N isotope analysis was completed at preliminary 1-cm intervals through the cores of two lakes on opposite sides of the tree line. Results from this analysis show clear trends with distinct transitions in both cores, whose closely-matched timing suggests regional-scale climate events. These results indicate that the Early Holocene was warm and dry, with a sudden shift to wetter conditions around 7200-6900 cal yr BP. Another shift to cooler conditions occurred at 4000 cal yr BP, and a final transition to even cooler temperatures occurred around 755-715 cal yr BP, coinciding with the Little Ice Age. Additionally, a modern lake survey was completed using surface sediments of numerous lakes throughout the Arctic and Subarctic. This survey verifies the strong influence of boreal forest vs. tundra conditions in affecting various environmental properties within lakes, including carbon and nitrogen isotopes. Lastly, time-series analysis was completed on two sections of Danny’s Lake core at high resolution (up to 2 mm), in order to determine short-term climate cycles. These results highlight specific climate frequencies which may be related to the Pacific Decadal Oscillation. These results offer insight to short-term climate phenomena in the Northwest Territories which will allow future climate modellers to make more accurate predictions of future climate and its impact on the ice road.
27

Eddy covariance measurements of methane flux in a subarctic fen with emphasis on spring-melt period

Hanis, Krista L. 10 September 2010 (has links)
Reliable determinations of ecosystem scale fluxes of net carbon (C) and greenhouse gases for northern peatland ecosystems are of great value to determine the impact of soil warming and altered precipitation on emissions. Additionally, few studies have been performed which measure the C fluxes, particularly methane flux (FCH4), during the spring melt and fall freeze up periods, therefore making it difficult to provide adequate annual C estimates from northern peatland ecosystems. This study aimed to determine ecosystem scale FCH4 from a eutrophic Subarctic fen at Churchill, Manitoba (58°45'N 94°4'W), to understand (a) seasonal trends over two consecutive growing seasons,(b) if over-winter stored CH4 was released as a pulse during the spring-melt period, and (c) soil temperature - FCH4 relations for modelling FCH4 over the spring-melt period. An ecosystem scale methane (CH4) and carbon dioxide (CO2) flux measurement system using the eddy covariance (EC) technique was used from late-June to mid-October of 2008 and early-June to late-September of 2009, with focus on the spring-melt period of late-May to mid-July of 2009. The EC flux measurement system consisted of a closed-path RMT-200 Fast Methane Analyzer (Los Gatos Research Inc.) along with a LI-7500 open-path CO2/H2O gas analyzer (LI-COR Biosci.) and a CSAT3 3-dimensional sonic anemometer (Campbell Sci.). The system was powered by a combination of wind, solar, and gas electric generation. The EC flux measurement system provided seasonal FCH4 values of 0 – 90 nmol CH4 m-2 s-1, similar to previous studies in Subarctic and Arctic peatlands which incorporated the EC technique. A melt period CH4 emission burst was not observed, rather a gradual increase in emission over the spring period. Modelled FCH4 using a temperature-response curve relationship with soil temperature at 5 cm depth over the spring-melt period (May 30 – July 19, 2009) showed the fen to be a net source of CH4, of 1.4 mmol m-2 CO2 equivalent.
28

Phytoplankton dynamics in the northeast subarctic Pacific during the 1998 El Niño, the 1999 La Niña and 2000 with special consideration to the role of coccolithophores and diatoms

Lipsen, Michael Simon 05 1900 (has links)
Phytoplankton dynamics and chemical characteristics of the euphotic zone were measured from 1998-2000 (an El Niño/La Niña cycle) at the 5 major stations along Line P. Near-shelf and offshore stations exhibited low seasonality in chlorophyll and moderate seasonality in particulate organic carbon (POC) production. During the 1998 El Niño, June was characterized by low chlorophyll and POC productivity due to nitrate depletion. In contrast, during the 1999 La Niña, and in 2000, higher POC productivity and nitrate occurred in June. During 1999, chlorophyll and POC productivity were similar to 1998 in late summer. Near-shelf biomass was highest in June and lowest in Feb. for the near-shelf stations. High nitrate, low chlorophyll (HNLC) stations had the highest chlorophyll in Feb. followed by June. The coccolithophore assemblage was usually numerically dominated by Emiliania huxleyi, particularly in June. Along the transect, coccolithophore abundance was much higher in June during the 1998 El Niño than in the 1999 La Niña, with Aug./Sept. abundance of both years being very low. Higher abundances were measured along the transect in June and the late summer of 2000 with sporadic ‘blooms’ of >1000 cells ml⁻¹ at some stations. Particulate inorganic carbon (PIC) production was high along the transect during June 1998, and low during both winters, June 1999 and during late summers of 1998 and 1999. There was an increase in diatom biomass and >20 µm POC production during the 1998 El Niño, specifically in the farthest offshore HNLC stations, yet diatoms were rarely found to dominate total phytoplankton biomass or production. However, there were some sporadic examples of anomalously high diatom biomass (carbon and abundance) as well as >20 µm POC production, specifically at P12 in Aug./Sept 2000. The same major diatom species were found throughout Line P (near-shelf, P16, and HNLC). Integrated silica production measured by ³²Si ranged from 0.2 to 4.7 mmol Si m⁻² d⁻¹ between 1999-2000. Silicic acid and nitrate were never limiting at all stations in Feb. and generally increased in concentration along Line P during all seasons.
29

Värmeflöden genom gröna tak i subarktiskt klimat : En studie av det gröna taket på Sjunde Huset i Kiruna

Nilsson, Linda January 2018 (has links)
Some of the problems with today’s urban civilizations are the lack of green areas and that the cities are getting warmer and warmer. Building green roofs contributes to a reduced greenhouse effect, as plants have a cooling effect that reduces the heat generated in both houses and cities. The greenhouse effect is reduced by the fact that the plants on the roof reflect much more solar energy than a black ceiling, which instead absorbs the heat. The plants help to make the building more energy efficient. Green roofs also contribute to the emergence of new green areas in cities where the settlement has taken over the city. The purpose of the study has been to, from an energy perspective, examine the advantages and potential disadvantages of green roof energy performance in the subarctic climate. The study has been conducted by analyzing measured heat flow and temperature conditions during a winter season. The study was delimited to the green roof of Sjunde Huset in Kiruna, Norrbotten, Sweden. The research questions examined are the advantages and disadvantages of energy performance for green roofs, how does the energy performance vary for green roofs in cold climate during the season and what energy performance has the green roof under investigation in the subarctic climate. The study has been done through analysis of measurement data to see if the cooling effect from an energy perspective can be a disadvantage in a so-called subarctic climate. The analysis has also investigated whether the heat-insulating and heat-storing effect can be an advantage from an energy perspective in a so-called subarctic climate. The test period under review is from October 25, 2016 to January 4, 2017. The test period shows changes at different times. These times have been explored more closely. Collected measurement data has been analyzed using Excel chart against data for different weather conditions from SMHI. The different weather conditions are solar time, global radiation, wind speed and wind direction. Parameters that are also taken into account are polar night, night radiation, night cooling and snow conditions. The results show that green roofs are more beneficial in the subarctic climate from an energy perspective compared to black roofs. The green roof has lower temperature changes and heat flow than a traditional black roof. The internal temperature and heat flow of the green roof remain stable with minor changes during the winter period that is studied. The green roof has less temperature changes, heat flow and more stable indoor temperature than the black roof can depend, inter alia, on the thermal mass of the roof and the insulating capacity of the soil layer, which provides better thermal insulation. High wind velocities and low outdoor air temperatures can also be contributing factors to a cooling that causes slight changes in heat flow. Since the snow layer can function as an extra insulating layer and the test period only lasted until January 4, it would be interesting to see further studies where the entire winter season is analyzed. This is to see how the green roof behaves during a whole winter season, but also in the spring when large amounts of melt water can contribute to condensation that can affect heat flow. In the spring, large temperature differences can occur during day and night times that can affect heat flow through the green roof.
30

Phytoplankton dynamics in the northeast subarctic Pacific during the 1998 El Niño, the 1999 La Niña and 2000 with special consideration to the role of coccolithophores and diatoms

Lipsen, Michael Simon 05 1900 (has links)
Phytoplankton dynamics and chemical characteristics of the euphotic zone were measured from 1998-2000 (an El Niño/La Niña cycle) at the 5 major stations along Line P. Near-shelf and offshore stations exhibited low seasonality in chlorophyll and moderate seasonality in particulate organic carbon (POC) production. During the 1998 El Niño, June was characterized by low chlorophyll and POC productivity due to nitrate depletion. In contrast, during the 1999 La Niña, and in 2000, higher POC productivity and nitrate occurred in June. During 1999, chlorophyll and POC productivity were similar to 1998 in late summer. Near-shelf biomass was highest in June and lowest in Feb. for the near-shelf stations. High nitrate, low chlorophyll (HNLC) stations had the highest chlorophyll in Feb. followed by June. The coccolithophore assemblage was usually numerically dominated by Emiliania huxleyi, particularly in June. Along the transect, coccolithophore abundance was much higher in June during the 1998 El Niño than in the 1999 La Niña, with Aug./Sept. abundance of both years being very low. Higher abundances were measured along the transect in June and the late summer of 2000 with sporadic ‘blooms’ of >1000 cells ml⁻¹ at some stations. Particulate inorganic carbon (PIC) production was high along the transect during June 1998, and low during both winters, June 1999 and during late summers of 1998 and 1999. There was an increase in diatom biomass and >20 µm POC production during the 1998 El Niño, specifically in the farthest offshore HNLC stations, yet diatoms were rarely found to dominate total phytoplankton biomass or production. However, there were some sporadic examples of anomalously high diatom biomass (carbon and abundance) as well as >20 µm POC production, specifically at P12 in Aug./Sept 2000. The same major diatom species were found throughout Line P (near-shelf, P16, and HNLC). Integrated silica production measured by ³²Si ranged from 0.2 to 4.7 mmol Si m⁻² d⁻¹ between 1999-2000. Silicic acid and nitrate were never limiting at all stations in Feb. and generally increased in concentration along Line P during all seasons. / Science, Faculty of / Botany, Department of / Graduate

Page generated in 0.0675 seconds