• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 192
  • 2
  • 1
  • Tagged with
  • 198
  • 187
  • 159
  • 159
  • 35
  • 33
  • 27
  • 18
  • 17
  • 16
  • 15
  • 14
  • 14
  • 12
  • 12
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
121

Signatures of Dark Matter at the LHC : A phenomenological study combining collider and cosmological bounds to constrain a vector dark matter particle model

Olsson, Anton January 2022 (has links)
Everything that humans have ever touched, created or built something from consists of a type of matter that only makes up 15 percent of the total matter in the universe. The remaining 85 percent is attributed to dark matter, a so far not discovered and non-luminous type of matter. In this thesis a potential dark matter particle candidate has been studied by investigating an extension of the SU(2) symmetry into a dark gauge sector, where the new sector is connected to the standard model through a vector-like fermion portal. In order to understand how such an extension is made, the Lagrangian density of the standard model and its different gauge sectors were derived. The cross sections of the process of pair production of dark matter particles and tau leptons in the final state due to proton-proton collisions at the LHC was simulated with the software \texttt{MadGraph}. The cross sections were used to draw significance contours for the exclusion and discovery regions for parts of the parameter space of the new model, for current and projected luminosities of the LHC. The projected luminosity scans also consider how lowering the uncertainty in the number of background events through hypothetical improvements to detectors would impact the exclusion and discovery contours. The significance contours were combined with relic density constraints, derived from comparisons between measurements of the Planck telescope and calculations from the software \texttt{MicrOMEGAs}. The resulting graphs show that there are non-forbidden regions of the parameter space that are significant for exclusion and discovery for luminosity of current searches. Increasing the luminosity while keeping the uncertainty in the number of background events the same yielded only minor increases to the exclusion and discovery contours. Combining the projected luminosities with improvements to the background uncertainty instead produced exclusion and discovery regions that were significantly larger than those for the current luminosity.
122

Benchmark of simulation of an ion guide for neutron-induced fission products

Gao, Zhihao January 2022 (has links)
Independent yield distributions of high-energy neutron-induced fission are of importance to achieve a good understanding of fission. Even though the mass and charge yield distributions of thermal neutron-induced fission are well known, there are few experimental data for high-energy neutron-induced fission. In addition to basic research on the fission process, independent yield distributions of high-energy neutron-induced fission play a key role in the development of Generation IV fast nuclear reactors. To facilitate measurements of independent fission yields of high-energy neutron-induced fission, a dedicated ion guide and a proton-neutron converter were developed and put to use in experiments at the isotope separator facility IGISOL in Jyväskylä. In parallel, a simulation model of the system was developed in order to optimize the collecting efficiency of fission products in the ion guide. The model uses the Monte Carlo code MCNPX to simulate the neutron production, the fission model code GEF to simulate the fission process, and GEANT4 for ion transportation. In order to benchmark the simulation model, metal foils were inserted in the ion guide with the purpose of collecting fission products. At the same time, nickel, cobalt and indium foils were located between the pn-converter and the ion guide to record the neutron flux from the pn-converter. After the beam was turned off, and after several days of cooling, g-ray spectroscopy measurements of the foils were conducted using a well shielded HPGe detector. Based on the identified g-ray transitions in the spectroscopy data, the productions of corresponding fission products and neutron activation products were calculated, and then used to benchmark the transportation and collection of fission products, as well as neutron production, in the simulations. The conclusion from the benchmark is that the transportation of fission products in the helium gas, as simulated by GEANT4, agrees very well with the measurement, while the transportation of fission products in the uranium targets agrees with the measurement within 10%. The neutron flux at the high-energy part of the neutron spectrum is overestimated by about 40%.Thanks to the benchmark it has been shown that the predictive power of the model is satisfactory and sufficient for the purpose of modeling the ion guide. Furthermore, the parameters involved in the simulations, such as neutron production, distance between the neutron source and the ion guide, volume of the ion guide and so on, play an important role in the optimization of the setup. However, the lower than expected fission rate suggests that the optimization on these parameters may not be enough to achieve a sufficiently high intensity of fission products, especially for nuclei far from the stability line. To achieve a sufficiently high intensity, an electric field guidance, similar to the RF structure of the CARIBU gas catcher presented in G.Savard et al. Nucl. Inst. Meth. B, 376: 246, 2016, to collect fission products is considered.
123

Determination of the homogeneity of the detection efficiency of silicon detectors using light ions

Ellen, Hamarstedt January 2022 (has links)
In this project, the homogeneity of the detection efficiency of two silicon detectors were examined using a radioactive alpha-source, 241Am, to study the surfaces of the detectors by exposing a small part of the detector at a time. By then observing the variations of the deposited alpha-energies at different positions on the detector, one can map the differences in the homogeneity of the surface. Many variations of different magnitudes were found; some variations can reasonably be represented by either variations in the dead layer or residue glue along the edges. Some variations seemed best explained by pieces of dust or dirt on the surface. The possibility of using heavy fission fragments from the decay of 252Cf to compare the effects was explored but shown to be non-feasible in the scope of this project. Finally, proposals for further work and improvements are discussed.
124

Phenomenology of SO(10) Grand Unified Theories

Pernow, Marcus January 2019 (has links)
Although the Standard Model (SM) of particle physics describes observations well, there are several shortcomings of it. The most crucial of these are that the SM cannot explain the origin of neutrino masses and the existence of dark matter. Furthermore, there are several aspects of it that are seemingly ad hoc, such as the choice of gauge group and the cancellation of gauge anomalies. These shortcomings point to a theory beyond the SM. Although there are many proposed models for physics beyond the SM, in this thesis, we focus on grand unified theories based on the SO(10) gauge group. It predicts that the three gauge groups in the SM unify at a higher energy into one, which contains the SM as a subgroup. We focus on the Yukawa sector of these models and investigate the extent to which the observables such as fermion masses and mixing parameters can be accommodated into different models based on the SO(10) gauge group. Neutrino masses and leptonic mixing parameters are particularly interesting, since SO(10) models naturally embed the seesaw mechanism. The difference in energy scale between the electroweak scale and the scale of unification spans around 14 orders of magnitude. Therefore, one must relate the parameters of the SO(10) model to those of the SM through renormalization group equations. We investigate this for several different models by performing fits of SO(10) models to fermion masses and mixing parameters, taking into account thresholds at which heavy right-handed neutrinos are integrated out of the theory. Although the results are in general dependent on the particular model under consideration, there are some general results that appear to hold true. The observ- ables of the Yukawa sector can in general be accommodated into SO(10) models only if the neutrino masses are normally ordered and that inverted ordering is strongly disfavored. We find that the observable that provides the most tension in the fits is the leptonic mixing angle θ2l3, whose value is consistently favored to be lower in the fits than the actual value. Furthermore, we find that numerical fits to the data favor type-I seesaw over type-II seesaw for the generation of neutrino masses. / <p>Examinator: Professor Mark Pearce, Fysik, KTH</p>
125

Calibration of Coincidence Gamma Spectrometry Detector GeCo

Ivarsson Biebel, Ellen, Wallentin, Rasmus January 2024 (has links)
To verify nuclear weapon treaties, such as CTBT the ability to scientifically monitor treaty violations is of importance. One tool for monitoring nuclear weapons testing is the use of gamma ray spectrometry. A calibration on a multi detector element coincidence gamma spectrometer setup was performed from previously gathered experimental data. Data from one calibration sample and a blank sample were analyzed in this project. The first part consisted of energy, full width half maximum (FWHM) and efficiency calibrations, for each of the detectors. Spectra were created, showing the results in the different detectors. From the spectra, several radionuclides were identified, both background nuclides and nuclides from the calibration sample. To each peak, a Gaussian shaped curve was numerically fitted and the parameters were used to perform the calibrations. Efficiencies were calculated for the individual peaks, whereas the energy and FWHM calibrations resulted in linear relationships. During the second part of this project, coincident gamma-rays were investigated. The efficiency for a coincident decay in each detector pair was calculated. This was compared with the product of the singular efficiencies, and a correction term was introduced. Furthermore, the signal to noise ratio was compared for spectra created with different data sorting methods.
126

Development of a Neutron Flux Monitoring System for Sodium-cooled Fast Reactors

Verma, Vasudha January 2017 (has links)
Safety and reliability are one of the key objectives for future Generation IV nuclear energy systems. The neutron flux monitoring system forms an integral part of the safety design of a nuclear reactor and must be able to detect any irregularities during all states of reactor operation. The work in this thesis mainly concerns the detection of in-core perturbations arising from unwanted movements of control rods with in-vessel neutron detectors in a sodium-cooled fast reactor. Feasibility study of self-powered neutron detectors (SPNDs) with platinum emitters as in-core power profile monitors for SFRs at full power is performed. The study shows that an SPND with a platinum emitter generates a prompt current signal induced by neutrons and gammas of the order of 600 nA/m, which is large enough to be measurable. Therefore, it is possible for the SPND to follow local power fluctuations at full power operation. Ex-core and in-core detector locations are investigated with two types of detectors, fission chambers and self-powered neutron detectors (SPNDs) respectively, to study the possibility of detection of the spatial changes in the power profile during two different transient conditions, i.e. inadvertent withdrawal of control rods (IRW) and one stuck rod during reactor shutdown (OSR). It is shown that it is possible to detect the two simulated transients with this set of ex-core and in-core detectors before any melting of the fuel takes place. The detector signal can tolerate a noise level up to 5% during an IRW and up to 1% during an OSR.
127

Construction of the Higgs Mechanism and the Lee-Quigg-Thacker-bound

Wilhelm, Franz January 2019 (has links)
In this paper the higgs mechanism for the standard model is constructed in steps. First by considering spontaneous breaking of discrete and continuous global gauge invariance. Then spontaneous breaking of local gauge invariance. These results are then used to construct the electroweak part of the standard model through application of the higgs mechanism. Finally, the LQT-upper bound of 1 TeV for the higgs mass is calculated through unitarity constraints. / I denna artikel konstrueras higgsmekanismen i standardmodellen stegvis. Först genom att beakta spontant symmetribrott av diskreta samt kontinuerliga globala gaugeinvarianser. Därefter spontant symmetribrott av lokala gaugeinvarianser. Dessa resultat används sedan för att konstruera den elektrosvaga delen av standardmodellen genom tillämpning av higgsmekanismen. Slutligen beräknas en övre gräns för higgsmassan, den så kallade LQT-gränsen, via unitaritetsbegränsingar.
128

Strongly Interacting Fermi Gases in Three Dimensions and One Dimension

January 2011 (has links)
This thesis presents the experimental study on the two-spin component, strongly interacting 6 Li Fermi gases in 3D and 1D traps. The interaction strength is tuned from the molecular BEC regime to the BCS regime using a Feshbach resonance. The trap dimension can be tuned from 3D to 1D with the implementation of optical lattice. The evaporation of imbalanced Fermi gases in 3D trap is studied. The anisotropic and fast evaporation is the cause of the deformation observed in the 2006 Rice experiment. In a balanced Fermi system, the fraction of correlated states is measured as a function of interaction and temperature. At unitarity, the fraction of correlated states is ∼85% and exists above T c . The one-body-like photoexcitation rate can be related to the contact quantity. Lastly, the spin-imbalance in a one-dimensional Fermi gas is studied. The 1D phase diagram is mapped out. The result agrees well with the 1D theory, in which the partially polarized regime is predicted to be a FFLO phase, an exotic superfluid with pairs carrying finite center-of-mass momentum proposed almost 50 years ago.
129

Cold atom control with an optical one-way barrier

Schoene, Elizabeth A., 1979- 12 1900 (has links)
xvi, 176 p. : ill. (some col.) / The research presented in this dissertation aims to contribute to the field of atom optics via the implementation and demonstration of an all-optical one-way barrier for 87 Rb atoms--a novel tool for controlling atomic motion. This barrier--a type of atomic turnstile--transmits atoms traveling in one direction but hinders their passage in the other direction. We create the barrier with two laser beams, generating its unidirectional behavior by exploiting the two hyperfine ground states of 87 Rb. In particular, we judiciously choose the frequency of one beam to present a potential well to atoms in one ground state (the transmitting state) and a potential barrier to atoms in the other state (the reflecting state). The second beam optically pumps the atoms from the transmitting state to the reflecting state. A significant component of the experimental work presented here involves generating ultra-cold rubidium atoms for demonstrating the one-way barrier. To this end, we have designed and constructed a sophisticated 87 Rb cooling and trapping apparatus. This apparatus comprises an extensive ultra-high vacuum system, four home-built, frequency-stabilized diode laser systems, a high-power Yb:fiber laser, a multitude of supporting optics, and substantial timing and control electronics. This system allows us to cool and trap rubidium atoms at a temperature of about 30 μK. The results presented in this dissertation are summarized as follows. We successfully implemented a one-way barrier for neutral atoms and demonstrated its asymmetric nature. We used this new tool to compress the phase-space volume of an atomic sample and examined its significance as a physical realization of Maxwell's demon. We also demonstrated the robustness of the barrier's functionality to variations in several important experimental parameters. Lastly, we demonstrated the barrier's ability to cool an atomic sample, substantiating its potential application as a new cooling tool. This dissertation includes previously published coauthored material. / Committee in charge: Dr. Hailin Wang, Chair; Dr. Daniel A. Steck, Research Advisor; Dr. Jens U. Nockel; Dr. David M. Strom; Dr. Jeffrey A. Cina
130

Generation and Validation of di-Higgs events in the 4τ final state

Vaheid, Halimeh January 2018 (has links)
The Higgs self-coupling has a vital role by giving a deeper understanding of the Higgs particle. Furthermore, the way it opens to physics beyond the SM, encourages us to do MC simulationstudies for varying λ_hhh . In this project, we investigate the effects of choosing different values for λ_hhh on the kinematics of all particles involved in the hh → τ τ τ τ decay channel and the resultsare compared with what we get from the SM prediction of λ_hhh .The data show that λ_hhh more close to the SM trilinear Higgs self-coupling results in generatingthe Higgs particles with the higher masses and higher momenta. On the other hand, for the moremassive Higgs bosons we have more energetic neutrinos in the final states which escape from thedetector without being detected.

Page generated in 0.0445 seconds