• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 192
  • 2
  • 1
  • Tagged with
  • 198
  • 187
  • 159
  • 159
  • 35
  • 33
  • 27
  • 18
  • 17
  • 16
  • 15
  • 14
  • 14
  • 12
  • 12
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
91

Positioning of Nuclear Fuel Assemblies by Means of Image Analysis on Tomographic Data

Troeng, Mats January 2004 (has links)
A tomographic measurement technique for nuclear fuel assemblies has been developed at the Department of Radiation Sciences at Uppsala University [1]. The technique requires highly accurate information about the position of the measured nuclear fuel assembly relative to the measurement equipment. In experimental campaigns performed earlier, separate positioning measurements have therefore been performed in connection to the tomographic measurements. In this work, another positioning approach has been investigated, which requires only the collection of tomographic data. Here, a simplified tomographic reconstruction is performed, whereby an image is obtained. By performing image analysis on this image, the lateral and angular position of the fuel assembly can be determined. The position information can then be used to perform a more accurate tomographic reconstruction involving detailed physical modeling. Two image analysis techniques have been developed in this work. The stability of the two techniques with respect to some central parameters has been studied. The agreement between these image analysis techniques and the previously used positioning technique was found to meet the desired requirements. Furthermore, it has been shown that the image analysis techniques offer more detailed information than the previous technique. In addition, its off-line analysis properties reduce the need for valuable measurement time. When utilizing the positions obtained from the image analysis techniques in tomographic reconstructions of the rod-by-rod power distribution, the repeatability of the reconstructed values was improved. Furthermore, the reconstructions resulted in better agreement to theoretical data.
92

Measurements of Neutron-induced Nuclear Reactions for More Precise Standard Cross Sections and Correlated Fission Properties

Jansson, Kaj January 2017 (has links)
It is difficult to underestimate the importance of neutron cross section standards in the nuclear data field. Accurate and precise standards are prerequisites for measuring neutron cross sections. Two different projects are presented here with the aim of improving on neutron standards. A simulation study was performed for an experiment intended to measure the cross sections of H(n,n), 235U(n,f), and 238U(n,f) relative to each other. It gave the first estimates of the performance of the experimental setup. Its results have aided the development of the experimental setup by setting limits on the target and detector design. A second neutron-standard project resulted in three measurements of 6Li(n,α)t relative to 235U(n,f). Each subsequent measurement improved upon the previous one and changed the experimental setup accordingly. Although, preliminary cross sections were agreeing well with evaluated data files in some energy intervals, the main goal to measure the cross section up to 3 MeV was not reached. Mass yields and energy spectra are important outcomes of many fission experiments, but in low yield regions the uncertainties are still high even for recurrently studied nuclei. In order to understand the fission dynamics, one also needs correlated fission data. One particular important property is the distribution of excitation energy between the two nascent fission fragments. It is closely connected to the prompt emission of neutrons and γ’s and reveals information about how nucleons and energy are transferred within the fissioning nucleus. By measuring both the pre and post neutron-emission fragment masses, the cumbrance of detecting neutrons directly is overcome. This is done using the fission spectrometer VERDI and the 2E-2v method. In this work I describe how both the spectrometer, the analysis method, and the calibration procedures have been further developed. Preliminary experimental data show the great potential of VERDI, but also areas that call for more attention. A previously overlooked consequence of a central assumption was found and a correction method is proposed that can correct previously obtained data as well. The last part of this thesis concerns the efficiencies of the fission product extraction at the IGISOL facility. The methodology of the fission yield measurements at IGISOL are reliant on assumptions that have not been systematically investigated. The presented work is a first step of such an investigation that can also be used as a tool for optimising the setup for measurements of exotic nuclei. A simulation framework connecting three different simulation codes was developed to investigate the produced yield of fission products in a buffer gas. Several different variants of the setup were simulated and the findings were generally accordant with previous estimates. A reasonable agreement between experimental data and the simulation results is demonstrated.
93

Searching for a charged Higgs boson and development of a hardware track trigger with the ATLAS experiment

Gradin, Joakim January 2017 (has links)
This thesis describes searches for a heavy charged Higgs boson decaying into a top and bottom quark pair, and the development of a hardware track trigger with theATLAS experiment. The data for the two searches was collected with the ATLAS detector at the Large Hadron Collider(LHC) with pp collision energies of √s = 8 and 13 TeV, and corresponds to an integrated luminosity of 20.3 and 13.2 fb-1 respectively. The main background for this signal is the production of tt̄ pairs with additional heavy flavor radiation. The searches with a single lepton in the final state found no evidence of a charged Higgs boson, and set 95% CLS upper limits on the production times branching ratio for masses ranging between 200-1000 GeV. The preparation of using the final state with two leptons in future searches is discussed. The design of a hardware track trigger based on pattern matching and linear track fitting was studied for the purpose of reducing the high event rates of the High-Luminosity LHC, which is expected to provide pp collisions with a luminosity about five times the nominal value, in the second half of the 2020’s. A simulation framework was developed to emulate the pattern matching and was used to test its ability to filter hits in high pile-up environments. The results of this simulation, together with simulations of the track fitting and latency, show that such a track trigger is a viable option for the ATLAS experiment in the High Luminosity-LHC era.
94

Study of Discrete Symmetries in η' Meson Decays with BESIII

Thorén, Viktor January 2017 (has links)
This thesis studies the rare decay η' → π+π-e+e- using Monte Carlo simulations and data from the BES-III detector in Beijing, China. The branching ratio of the reaction was measured at BES-III in 2013 using a data set of 225×106 J/Ψ events. This work lays the groundwork for an updated branching ratio measurement using the full data set of 1.3×109 J/Ψ and determines a potential CP-violating asymmetry in the angle between the decay planes of the π+π-- and e+e--pairs. A total of 2558 signal events are observed after cuts, and the asymmetry parameter is determined to be  Aφ = (1.96 ± 1.97stat.± 0.4syst. ) × 10-2. The result is consistent with zero within the uncertainty.
95

Non-conformal gauge/string duality : A rigorous case study

Chen-Lin, Xinyi January 2017 (has links)
The gauge/string duality, a.k.a. the holographic principle is a profound assertion that emerged from string theory. It relates strongly-coupled gauge theories to weakly coupled string theories living in a higher-dimensional curved geometry. Nevertheless, it is a conjecture, and only a few instances of its more concrete form, the AdS/CFT correspondence, are well-understood. The most well-studied example is the duality between N=4 SYM, which is a CFT, and type IIB string theory in AdS5xS5 background. Generalization to less symmetric cases is a must, and the next logical step is to add a mass scale to N=4 SYM, therefore breaking its conformal symmetry and leading to N=2* SYM, the theory we study in this thesis. It is supersymmetric enough to employ the powerful localization method that reduces its partition function to a matrix model. We will see that the mass scale causes non-trivial phase structures in its vacuum configuration, visible in the holographic regime. We will probe them using Wilson loops in different representations of the gauge group. On the other hand, the dual supergravity background was derived by Pilch-Warner, making N=2* theory an explicitly testable non-conformal holographic case, which is a rare example. We will prove that the duality works for the dual observables (string action, D-branes) we managed to compute, even at a quantum-level.
96

Modelling of the Analog Electronic Stage of a Detection System for Hard X-ray Astronomy

Campos Garrido, Gonzalo January 2012 (has links)
Germanium detectors are used by the scientic community to study cosmic X-ray sources. In order to localize the exact 3D position of an X-ray interaction, double-sided strip detectors are used. Each strip requires a single readout electronic stage to convert induced charge into a voltage pulse. We present here the computer simulation of such an analog electronic stage. Each particular element of this stage, i.e. charge-sensitive preamplier, amplier, oset corrector, lter and analog-to-digital converter, will be simulated in detail, taking into account temperature and noise performances. Furthermore, a tool to simultaneously simulate multiple strips for several X-ray interaction points was developed. This tool will facilitate the study of all electronic chains as a whole. / <p>Validerat; 20120908 (anonymous)</p>
97

Simulation of birefringence effects for high-energy neutrino detectors

Heyer, Nils January 2021 (has links)
The detection of high-energy neutrinos in the E &gt; O(PeV) range requires newdetection techniques in order to cope with the decreasing flux. The radio detectionmethod uses Askaryan emission to detect these neutrinos. The propagation of theradio pulses has to be modeled carefully in order to estimate the properties of theneutrinos from the detected radio pulse. This report introduces a model whichwas implemented to the NuRadioMC code to simulate birefringence effects in theice of the South Pole. To do that, a new ice model was created which combinesthe density and directional dependence on the refractive index. With this icemodel and an analytical ray tracer the time delay and polarization resulting frombirefringence was simulated for different geometries. A directional dependenceon the magnitude of the time delay and the change of the polarization along thepropagation path was found. To model the mixing of the polarization states dueto this change in polarization a pulse propagation model was introduced. Timedelay calculations resulting from this model were compared to simulations andmeasurements from the ARA experiment and have shown good agreement.
98

Investigations into neutrino flavor reconstruction from radio detector data using convolutional neural networks

Ericsson, Oscar January 2021 (has links)
As the IceCube Neutrino Observatory seeks to expand its sensitivity to high PeV-EeV energies by means of the radio technique, the need for fast, efficient and reliable reconstruction methods to recover neutrino properties from radio detector data has emerged. The first recorded investigation into the possibilities of using a neural network based approach to flavor reconstruction is presented. More specifically, a deep convolutional neural network was built and optimized for the purpose of differentiating νe charged current (CC) interaction events from events of all other flavors and interaction modes. The approach is found to be largely successful for neutrino energies above 1018 eV, with a reported accuracy on νe - CC events of &gt; 75% for neutrino energies &gt; 1018.5 eV while maintaining a &gt;60% accuracy for energies &gt; 1018. Predictive accuracy on non- νe - CC events varies between 80% and 90% across the considered neutrino energy range 1017&lt;Eν&lt;1019. The dependence of the accuracy on νe - CC events on neutrino energy is pronounced and attributed to the LPM effect, which alters the features of the radio signals significantly at energies above 1018 eV in contrast to non- νe - CC events. The method shows promise as a first neural network based neutrino flavor reconstruction method, and results can likely be improved through further optimization.
99

Monte-Carlo simulations of an AmBe neutron source

Sjöberg, Josefine January 2021 (has links)
The Department of Physics and Astronomy in Uppsala is planning to construct a source-based neutron irradiation facility at Ångströms laboratory. The purpose of this facility will, as of now, mainly be for students and employees to conduct scientific experiments and to calibrate the university's neutron scintillator detectors. A vital part of the construction is the shielding of the source, for both safety reasons and practicality issues. In this project, a series of simulations were made to determine the necessary dimensions of the shielding to ensure that the radiation dose levels stayed under the stipulated 6 mSv per year. Two types of shielding materials were tested, borated and non-borated polyethylene. It was found that the borated polyethylene performed better in shielding the source, but not enough to justify the higher material cost. The optimal dimensions of the shielding for non-borated polyethylene were found to be 60x60x74cm.
100

Maximum Likelihood Estimation of Hyperon Parameters in Python : Facilitating Novel Studies of Fundamental Symmetries with Modern Software Tools

Verbeek, Benjamin January 2021 (has links)
In this project, an algorithm has been implemented in Python to estimate the parameters describing the production and decay of a spin 1/2 baryon - antibaryon pair. This decay can give clues about a fundamental asymmetry between matter and antimatter. A model-independent formalism developed by the Uppsala hadron physics group and previously implemented in C++, has been shown to be a promising tool in the search for physics beyond the Standard Model (SM) of particle physics. The program developed in this work provides a more user-friendly alternative, and is intended to motivate further use of the formalism through a more maintainable, customizable and readable implementation. The hope is that this will expedite future research in the area of charge parity (CP)-violation and eventually lead to answers to questions such as why the universe consists of matter. A Monte-Carlo integrator is used for normalization and a Python library for function minimization. The program returns an estimation of the physics parameters including error estimation. Tests of statistical properties of the estimator, such as consistency and bias, have been performed. To speed up the implementation, the Just-In-Time compiler Numba has been employed which resulted in a speed increase of a factor 400 compared to plain Python code.

Page generated in 0.1079 seconds