• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 2
  • Tagged with
  • 8
  • 8
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Wilson loops and their gravity duals in AdS_4/CFT_3

Farquet, Daniel January 2015 (has links)
In the first part of this thesis, we study the duality of Wilson loops and M2-branes in AdS<sub>4</sub>/CFT<sub>3</sub>. We focus on supersymmetric M-theory solutions on AdS<sub>4</sub>xY<sub>7</sub> that have a superconformal dual description on S<sup>3</sup> = ?AdS<sup>4</sup>. We will find that the Hamiltonian function h<sub>M</sub> for the M-theory circle plays an important role in the duality. We show that an M2-brane wrapping the M-theory circle is supersymmetric precisely at the critical points of h<sub>M</sub>, and moreover the value of this function at those points determines the M2-brane actions. Such a configuration determines the holographic dual of a Wilson loop for a Hopf circle in S<sup>3</sup>. We find agreement in large classes of examples between the Wilson loop and its dual M2-brane and also that the image h<sub>M</sub>(Y<sub>7</sub>) determines the range of support of the eigenvalues in the dual large N matrix model, with the critical points of h<sub>M</sub> mapping to points where the derivative of the eigenvalue density is discontinuous. We will then move away from the three-sphere and construct gravity duals to a broad class of N=2 supersymmetric gauge theories defined on a general class of three-manifold geometries. The gravity backgrounds are based on Euclidean self-dual solutions to four-dimensional gauged supergravity. As well as constructing new examples, we prove in general that for solutions defined on the four-ball the gravitational free energy depends only on the supersymmetric Killing vector. Our result agrees with the large N limit of the free energy of the dual gauge theory, computed using localisation. This constitutes an exact check of the gauge/gravity correspondence for a very broad class of gauge theories defined on a general class of background three-manifold geometries. To further verify that our gravitational backgrounds are indeed dual to field theories on their boundaries, we compute Wilson loops and their M2-brane duals in this general setting. We find that the Wilson loop is given by a simple closed formula which depends on the background geometry only through the supersymmetric Killing vector field. The supergravity dual M2-brane precisely reproduces this large N field theory result. This constitutes a further check of AdS<sub>4</sub>/CFT<sub>3</sub> for a very broad class of examples.
2

Non-conformal gauge/string duality : A rigorous case study

Chen-Lin, Xinyi January 2017 (has links)
The gauge/string duality, a.k.a. the holographic principle is a profound assertion that emerged from string theory. It relates strongly-coupled gauge theories to weakly coupled string theories living in a higher-dimensional curved geometry. Nevertheless, it is a conjecture, and only a few instances of its more concrete form, the AdS/CFT correspondence, are well-understood. The most well-studied example is the duality between N=4 SYM, which is a CFT, and type IIB string theory in AdS5xS5 background. Generalization to less symmetric cases is a must, and the next logical step is to add a mass scale to N=4 SYM, therefore breaking its conformal symmetry and leading to N=2* SYM, the theory we study in this thesis. It is supersymmetric enough to employ the powerful localization method that reduces its partition function to a matrix model. We will see that the mass scale causes non-trivial phase structures in its vacuum configuration, visible in the holographic regime. We will probe them using Wilson loops in different representations of the gauge group. On the other hand, the dual supergravity background was derived by Pilch-Warner, making N=2* theory an explicitly testable non-conformal holographic case, which is a rare example. We will prove that the duality works for the dual observables (string action, D-branes) we managed to compute, even at a quantum-level.
3

Symmetries of Super Wilson Loops and Fishnet Feynman Graphs

Müller, Dennis 19 April 2018 (has links)
Integrabilität hat sich als ein wichtiges Konzept erwiesen, um die Grenzen einer störungstheoretischen Beschreibung zu überwinden und ein tiefer gehendes Verständnis von speziellen vierdimensionalen Quantenfeldtheorien zu erlangen. Die der Integrabilität zugrunde liegende algebraische Struktur ist der Yangian, welchen man als eine unendlichdimensionale Erweiterung einer Lie-Algebra auffassen kann. In der vorliegenden Arbeit untersuchen wir die Yang’sche Symmetrie von super Wilson Schleifen und Fischnetz Feynman Graphen. Im ersten Teil dieser Arbeit diskutieren wir Maldacena–Wilson Schleifen in N=4 SYM Theorie. Unter Ausnutzung der nicht-chiralen Superraumbeschreibung des N=4 SYM Modells konstruieren wir den supersymmetrisch vervollständigten Schleifenoperator, welcher dual ist zu einer durch den vollen AdS5xS5 Superstring beschriebenen Minimalfläche. Wir zeigen, dass dieser Schleifenoperator sowohl globale superkonforme als auch lokale kappa Symmetrie besitzt, wobei wir letztere zur 1/2 BPS Eigenschaft der bosonischen Maldacena–Wilson Schleife in Beziehung setzen. Weiterhin berechnen wir den Einschleifenerwartungswert des Operators und beweisen dessen Endlichkeit. Anschließend beschäftigen wir uns detailliert mit der Yang’schen Symmetrie von glatten super Maldacena–Wilson Schleifen. Wir untersuchen anhand einer generischen Eichtheorie die verschiedenen Möglichkeiten, die Yang’schen Generatoren zu realisieren und begründen unsere Wahl einer Darstellung in Form von eichkovarianten Operatoreinsetzungen. Unter Verwendung dieser Darstellung beweisen wir nachfolgend die Yang’sche Invarianz des vollen Einschleifenerwartungswertes der super Maldacena– Wilson Schleife. Im zweiten Teil dieser Arbeit beschäftigen wir uns mit Fischnetz Feynman Graphen, welche aus viervalenten Vertizes bestehen, die durch skalare Propagatoren miteinander verbunden sind. Wir zeigen, dass diese Diagramme zu allen Schleifenordnungen eine konforme Yang’sche Symmetrie aufweisen und konstruieren explizit die Yang’schen Generatoren, die diese Diagramme vernichten. Für Vielschleifendiagramme gelingt uns Letzteres durch eine Umformulierung der Symmetrie in Form von Eigenwertgleichungen inhomogener Monodromiematrizen, aus deren Entwicklung sich die Generatoren ablesen lassen. Die Yang’sche Symmetrie impliziert, dass Fischnetz Integrale partielle Differenzialgleichungen erfüllen, deren Form wir anhand des Boxintegrals illustrieren. / Quantum integrability has turned out to be an important concept in overcoming the limitations of perturbation theory and reaching a more profound understanding of particular four-dimensional quantum field theories. The algebraic structure that underlies integrability in field and string theory is the Yangian, which can be understood as an infinite-dimensional extension of a Lie algebra. Here, we investigate the Yangian symmetry of super Maldacena–Wilson loops and fishnet Feynman graphs. In the first part of this thesis, we discuss Maldacena–Wilson loops in N=4 SYM theory. Utilizing the non-chiral superspace formulation of the N=4 SYM model, we construct the full supersymmetric completion of this operator, which is the natural object dual to a minimal surface described by the full AdS5xS5 superstring. We show that the super loop operator enjoys global superconformal as well as local kappa symmetry, the latter being related to the 1/2 BPS property of the bosonic Maldacena–Wilson loop. Using a convenient type of transversal gauge, we establish the operators one-loop expectation value and prove it to be finite. We then perform a detailed study of the Yangian symmetries of smooth super Maldacena–Wilson loops. Focusing on a generic gauge theory setup, we analyze in detail the different options for representing the Yangian generators and argue for a representation in terms of gauge-covariant operator insertions. Subsequently, we utilize this approach to prove the Yangian invariance of the full one-loop expectation value. The second part of this thesis is devoted to the study of four-dimensional fishnet Feynman graphs, which are built from four-valent vertices that are joined by scalar propagators. We show that these diagrams feature a conformal all-loop Yangian symmetry, which we phase in terms of generators annihilating these graphs as well as in terms of inhomogeneous monodromy eigenvalue relations. The Yangian symmetry results in novel differential equations for this family of largely unsolved Feynman integrals and we shall study their form by considering the box integral as an example.
4

Investigating the large N limit of SU(N) Yang-Mills gauge theories on the lattice

García Vera, Miguel Francisco 02 August 2017 (has links)
In dieser Arbeit praesentieren wir Resultate der topologischen Suszeptibilitaet “chi” und untersuchen die Faktorisierung der reinen SU(N) Yang-Mills Eichtheorie im 't Hooft'schen Grenzwert grosser N. Ein entscheidender Teil der Berechnung von chi in der Gittereichtheorie ist die Abschaetzung des topologischen Ladungsdichtekorrelators, die durch ein schlechtes Signal-Rausch- Verhaeltnis beeintraechtigt ist. Um dieses Problem abzuschwaechen, fuehren wir einen neuen, auf einem mehrstufigen Vorgehen beruhenden Algorithmus ein, um die Korrelationsfunktion von Observablen zu berechnen, die mit dem Yang-Mills Gradientenfluss geglaettet wurden. Angewandt auf unsere Observablen, erhalten wir Ergebnisse, deren Fehlerskalierung besser ist, als die von herkoemmlichen Monte-Carlo Simulationen. Wir bestimmen die topologische Suszeptibilitaet in der reinen Yang-Mills Eichtheorie fuer Eichgruppen mit N = 4,5,6 und drei verschiedenen Gitterabstaenden. Um das Einfrieren der Topologie zu umgehen, wenden wir offene Randbedingungen an. Zusaetzlich wenden wir die korrekte Definition der topologischen Ladungsdichte durch den Gradientenfluss an. Unser Endresultat im des Grenzfalls von grossen N repraesentiert eine neue Qualitaet in der Verifikation der Witten-Veneziano Formel. Schliesslich benutzen wir die Gitterformulierung, um die Erwartungswertfaktorisierung des Produkts eichinvarianter Operatoren im Grenzwert grosser N zu verifizieren. Wir arbeiten mit durch den Yang-Mills Grandientenfluss geglaetteten Wilsonschleifen und Simulationen bis zur Eichgruppe SU(8). Die Extrapolationen zu grossen N sind in Ueberstimmung mit der Faktorisierung sowohl fuer endlichen Gitterabstand als auch in Kontinnumslimes. Unsere Daten erlauben uns nicht nur die Verifizierung der Faktorisierung, sondern auch einen hochpraezisen Test des 1/N Skalierungsverhaltens. Hier konnten wir das quadratische Skalierungsverhalten in 1/N finden, welches von 't Hooft vorhergesagt wurde. / In this thesis we present results for the topological susceptibility “chi”, and investigate the property of factorization in the 't Hooft large N limit of SU(N) pure Yang-Mills gauge theory. A key component in the lattice gauge theory computation of chi is the estimation of the topological charge density correlator, which is affected by a severe signal to noise problem. To alleviate this problem, we introduce a novel algorithm that uses a multilevel type approach to compute the correlation function of observables smoothed with the Yang-Mills gradient flow. When applied to our observables, the results show an scaling of the error which is better than the one of standard Monte-Carlo simulations. We compute the topological susceptibility in the pure Yang-Mills gauge theory for the gauge groups with N = 4, 5, 6 and three different lattice spacings. In order to deal with the freezing of topology, we use open boundary conditions. In addition, we employ the theoretically sound definition of the topological charge density through the gradient flow. Our final result in the limit N to infinity, represents a new quality in the verification of the Witten-Veneziano formula. Lastly, we use the lattice formulation to verify the factorization of the expectation value of the product of gauge invariant operators in the large N limit. We work with Wilson loops smoothed with the Yang-Mills gradient flow and simulations up to the gauge group SU(8). The large N extrapolations at finite lattice spacing and in the continuum are compatible with factorization. Our data allow us not only to verify factorization, but also to test the 1/N scaling up to very high precision, where we find it to agree very well with a quadratic series in 1/N as predicted originally by 't Hooft for the case of the pure Yang-Mills gauge theory.
5

Laços de Wilson supersimétricos na correspondência AdS/CFT / Supersymmetric Wilson loops in the AdS/CFT correspondence

Kuraoka, Dhyan Victor Hiromitsu 29 May 2013 (has links)
O objetivo desta dissertação é revisar os operadores laços de Wilson no contexto da correspondência AdS/CFT. Estes operadores, presentes em qualquer teoria de calibre, são importantes por nos fornecer um parâmetro de ordem para a transição de fase confinante/desconfinante. Além disso, eles são particularmente importantes no estudo da correspondência AdS/ CFT pois: i) Eles nos dão, em alguns casos, resultados exatos graças ao fato de poderem ser localizados em um modelo de matrizes, desta forma nos permitindo fazer testes altamente não triviais da correspondência; ii) Eles são os objetos da teoria de calibre que são duais as cordas propagando no interior do espaço, nos dando um rico dicionário entre quantidades no interior (AdS) e na borda do espaço (CFT). Depois de revisarmos os laços de Wilson em teorias de calibre e a correspondência Ads/CFT, introduziremos a definição dos laços de Wilson supersimétricos 1/2 BPS. Calcularemos eles para o caso de um acoplamento fraco e para qualquer outro valor da constante de acoplamento usando técnicas de modelos de matrizes. Finalmente, compararemos nossos resultados com computações de superfícies minimais no interior do espaço, encontrando uma concordância perfeita. / The aim of this thesis is to review Wilson loop operators in the contexto f the AdS/CFT correspondence. These operators, wich are present in any gauge theory, are important because they furnish an order parameter for confinement/deconfinement phase transitions. Besides this, they are particularly relevant in the study of the AdS/CFT correspondence because: i) they allow, in some cases, for exact results thanks to localization to matrix models and make it possible to perform highly non-trivial tests of the correspondence; ii) they are the gauge theory objects dual to strings propagating in the bulk of the space and give a rich dictionary between bulk (AdS) and boundary (CFT) quantities. After reviews of Wilson loops in gauge theories and of the Ads/CFT correspondence, we will introduce the definition of 1/2 BPS supersymmetric Wilson loops, we will compute them at weak coupling and then at any order in the coupling constant via matrix model techniques, and finally we will compare our results with minimal surface computations in the bulk, finding perfect agreement.
6

Laços de Wilson supersimétricos na correspondência AdS/CFT / Supersymmetric Wilson loops in the AdS/CFT correspondence

Dhyan Victor Hiromitsu Kuraoka 29 May 2013 (has links)
O objetivo desta dissertação é revisar os operadores laços de Wilson no contexto da correspondência AdS/CFT. Estes operadores, presentes em qualquer teoria de calibre, são importantes por nos fornecer um parâmetro de ordem para a transição de fase confinante/desconfinante. Além disso, eles são particularmente importantes no estudo da correspondência AdS/ CFT pois: i) Eles nos dão, em alguns casos, resultados exatos graças ao fato de poderem ser localizados em um modelo de matrizes, desta forma nos permitindo fazer testes altamente não triviais da correspondência; ii) Eles são os objetos da teoria de calibre que são duais as cordas propagando no interior do espaço, nos dando um rico dicionário entre quantidades no interior (AdS) e na borda do espaço (CFT). Depois de revisarmos os laços de Wilson em teorias de calibre e a correspondência Ads/CFT, introduziremos a definição dos laços de Wilson supersimétricos 1/2 BPS. Calcularemos eles para o caso de um acoplamento fraco e para qualquer outro valor da constante de acoplamento usando técnicas de modelos de matrizes. Finalmente, compararemos nossos resultados com computações de superfícies minimais no interior do espaço, encontrando uma concordância perfeita. / The aim of this thesis is to review Wilson loop operators in the contexto f the AdS/CFT correspondence. These operators, wich are present in any gauge theory, are important because they furnish an order parameter for confinement/deconfinement phase transitions. Besides this, they are particularly relevant in the study of the AdS/CFT correspondence because: i) they allow, in some cases, for exact results thanks to localization to matrix models and make it possible to perform highly non-trivial tests of the correspondence; ii) they are the gauge theory objects dual to strings propagating in the bulk of the space and give a rich dictionary between bulk (AdS) and boundary (CFT) quantities. After reviews of Wilson loops in gauge theories and of the Ads/CFT correspondence, we will introduce the definition of 1/2 BPS supersymmetric Wilson loops, we will compute them at weak coupling and then at any order in the coupling constant via matrix model techniques, and finally we will compare our results with minimal surface computations in the bulk, finding perfect agreement.
7

Line defects in conformal field theory / From weak to strong coupling

Barrat, Julien 14 March 2024 (has links)
Die konforme Feldtheorie findet in verschiedenen Bereichen Anwendungen, von statistischen Systemen in der Nähe kritischer Punkte bis hin zur Quantengravitation durch die AdS/CFT-Korrespondenz. Diese Theorien unterliegen starken Einschränkungen, die eine systematische nicht-perturbative Analyse ermöglichen. Konforme Defekte bieten eine kontrollierte Möglichkeit, die Symmetrie zu brechen und neue physikalische Phänomene einzuführen, während wichtige Vorteile der zugrunde liegenden konformen Symmetrie erhalten bleiben. Diese Dissertation untersucht konforme Liniendefekte sowohl im schwachen als auch im starken Kopplungsregimes. Es werden zwei verschiedene Klassen von Modellen untersucht. Wir konzentrieren uns zuerst auf die supersymmetrische Wilson-Linie in N = 4 Super Yang-Mills, die als ideales Testfeld für die Entwicklung innovativer Techniken wie dem analytischen konformen Bootstrap dient. Die zweite Klasse besteht aus magnetische Linien in Yukawa-Modellen, die faszinierende Anwendungen in 3d kondensierten Materiesystemen haben. Diese Systeme haben das Potenzial, Phänomene des Standardmodells in einem Niedrigenergieszenario nachzubilden. / Conformal field theory finds applications across diverse fields, from statistical systems at criticality to quantum gravity through the AdS/CFT correspondence. These theories are subject to strong constraints, enabling a systematic non-perturbative analysis. Conformal defects provide a controlled means of breaking the symmetry, introducing new physical phenomena while preserving crucial benefits of the underlying conformal symmetry. This thesis investigates conformal line defects in both the weak- and strong-coupling regimes. Two distinct classes of models are studied. First, we focus on the supersymmetric Wilson line in N = 4 Super Yang–Mills, which serves as an ideal testing ground for the development of innovative techniques such as the analytic conformal bootstrap. The second class consists of magnetic lines in Yukawa models, which have fascinating applications in 3d condensed-matter systems. These systems have the potential to emulate phenomena observed in the Standard Model in a low-energy setting.
8

Superconformal quantum field theories in string

Wiegandt, Konstantin 25 October 2012 (has links)
In dieser Dissertation werden Aspekte von superkonformen Quantenfeldtheorien untersucht, die für die sogenannte AdS/CFT Korrespondenz relevant sind. Die AdS/CFT Korrespondenz beschreibt eine Dualität zwischen Stringtheorien im Anti-de Sitter Raum und superkonformen Quantenfeldtheorien im Minkowskiraum. In diesem Kontext wurde die sog. Wilsonschleifen / Amplituden Dualität entdeckt, die die Übereinstimmung von n-Gluon MHV Amplituden und n-seitigen polygonalen Wilsonschleifen in der N=4 supersymmetrischen Yang-Mills (SYM) Theorie beschreibt. Im ersten Teil dieser Dissertation wird die Wilsonschleifenseite einer solchen möglichen Dualität in der N=6 superkonformen Chern-Simons (ABJM) Theorie untersucht. Das Hauptergebnis dieser Untersuchungen ist, dass der Erwartungswert der n-seitigen polygonalen Wilsonschleifen auf Einschleifenebene verschwindet, während er auf Zweischleifenebene in seiner funktionalen Form identisch zu der analogen Wilsonschleife in N=4 SYM auf Einschleifenniveau ist. Außerdem wird eine anomale konforme Wardidentität für Wilsonschleifen in Chern-Simons Theorie berechnet. Zudem werden die damit im Zusammenhang stehenden Entwicklungen für Amplituden und Korrelatoren in der ABJM Theorie diskutiert. Im zweiten Teil dieser Dissertation werden Dreipunktfunktionen von zwei geschützten Operatoren und einem Twist-Zwei Operator mit beleibigem Spin j in der N=4 SYM Theorie berechnet. Dafür werden die Indizes des Spin j Operators auf den Lichtkegel projiziert und der Korrelator wird in einem Grenzfall untersucht in dem der Impuls der bei dem Spin j Operator einfließt verschwindet. Dieser Grenzfall vereinfacht die perturbative Berechnung erheblich, da alle Dreipunktdiagramme effektiv auf Zweipunktdiagramme reduziert werden und die Abhängigkeit der Mischungsmatrix auf Einschleifenebene herausfällt. Das Ergebnis stimmt mit der Analyse der Operatorproduktentwicklung von Vierpunktfunktionen geschützter Operatoren von Dolan und Osborn aus dem Jahre 2004 überein. / In this thesis aspects of superconformal field theories that are of interest in the so-called AdS/CFT correspondence are investivated. The AdS/CFT correspondence states a duality between string theories living on Anti-de Sitter space and superconformal quantum field theories in Minkowski space. In the context of the AdS/CFT correspondence the so-called Wilson loop / amplitude duality was discovered, stating the equality of the finite parts of n-gluon MHV amplitudes and n-sided lightlike polygonal Wilson loops in N=4 supersymmetric Yang-Mills (SYM) theory. It is the subject of the first part of this thesis to investigate the Wilson loop side of a possible similar duality in N=6 superconformal Chern-Simons matter (ABJM) theory. The main result is, that the expectation value of n-sided lightlike polygonal Wilson loops vanishes at one-loop order and at two-loop order is identical in its functional form to the Wilson loop in N=4 SYM theory at one-loop order. Furthermore, an anomalous conformal Ward identity for Wilson loops in Chern-Simons theory is derived. Related developments and symmetries of amplitudes and correlators in ABJM theory are discussed as well. In the second part of this thesis we calculate three-point functions of two protected operators and one twist-two operator with arbitrary even spin j in N =4 SYM theory. In order to carry out the calculations, the indices of the spin j operator are projected to the light-cone and the correlator is evaluated in a soft-limit where the momentum coming in at the spin j operator becomes zero. This limit largely simplifies the perturbative calculation, since all three-point diagrams effectively reduce to two-point diagrams and the dependence on the one-loop mixing matrix drops out completely. The result is in agreement with the analysis of the operator product expansion of four-point functions of half-BPS operators by Dolan and Osborn in 2004.

Page generated in 0.0443 seconds