Spelling suggestions: "subject:"hard identities"" "subject:"card identities""
1 |
Conformal Symmetry In Field TheoryHuyal, Ulas 01 February 2011 (has links) (PDF)
In this thesis, conformal transformations in d and two dimensions and the results of conformal symmetry in classical and quantum field theories are reviewed. After investigating the conformal group and its algebra, various aspects of conformal invariance in field theories, like conserved charges, correlation functions and the Ward identities are discussed. The central charge and the Virasoro algebra are briefly touched upon.
|
2 |
Renormalized energy momentum tensor from the Gradient FlowCapponi, Francesco January 2017 (has links)
Strongly coupled systems are elusive and not suitable to be described by conventional perturbative approaches. However, they are ubiquitous in nature, especially in particle physics. The lattice formulation of quantum field theories provided a unique framework in which the physical content of these systems could be precisely determined. Combined with numerical techniques, the lattice formalism allowed to precisely determined physical quantities describing the thermodynamics, as well as the spectroscopy of strongly interacting theories. In this work, the lattice formulation has been employed to probe the effectiveness of a recently proposed method, which aims at determining the renormalized energy-momentum tensor in non perturbative regimes. The latter plays a fundamental role to quantitatively describe the thermodynamics and fluid-dynamics of hot, dense systems, or to characterize theories that enlarge the actual standard model. In all these aspects, only a non perturbative approach provides physically reliable results: hence a non perturbative determination of the energy momentum tensor is fundamental. The new method consists in defining suitable lattice Ward identities probed by observables built with the gradient flow. The new set of identities exhibits many interesting qualities, arising from the UV finiteness of such probes, and allows to define a numerical strategy for estimating the renormalization constants of the lattice energy-momentum tensor. In this work the method has been tested within two different quantum theories, with the purpose of understanding its effectiveness and reliability.
|
3 |
Aspectos de Teoria de Campos e Mecânica Estatística / Aspects of Field Theory and Statistical MechanicsGomes, Pedro Rogério Sergi 15 February 2013 (has links)
A teoria quântica de campos pode ser vista como um conjunto de métodos e idéias que além de sua importância no estudo das partículas elementares, tem sido amplamente usada em outras áreas. Em especial, ela constitui uma ferramenta indispensável no estudo moderno de transições de fases e fenômenos críticos. A origem dessa constante relação entre a teoria de campos e a matéria condensada deve-se ao fato que, apesar de suas diferenças superficiais, ambas tratam de problemas envolvendo um grande número de graus de liberdade. Assim, não é surpreendente que as mesmas técnicas possam ser úteis nos dois campos. Este trabalho trata de problemas nessas duas áreas e está essencialmente divido em duas partes. A primeira parte é dedicada ao estudo de teorias de campos com uma anisotropia entre o espaço e o tempo, o que implica uma quebra da simetria de Lorentz. Uma das motivações para considerar esse tipo de teoria vem justamente do estudo de transições de fase em sistemas da matéria condensada. Análises do grupo de renormalização com ênfase na possibilidade de restauração da simetria de Lorentz e também uma discussão sobre identidades de Ward são realizadas. Na segunda parte, a atenção é voltada para a mecânica estatística mas com uma abordagem típica da teoria de campos, em especial, voltada para o estudo de transições de fase clássicas e quânticas a partir da versão quantizada do modelo esférico e de sua extensão supersimétrica. / Quantum field theory can be seen as a set of methods and ideas that, besides its importance in the study of the elementary particles, has been widely used in other areas. In particular, it constitutes an indispensable framework in the modern approach to phase transitions and critical phenomena. The origin of this constant relationship between field theory and condensed matter is due to the fact that despite their superficial differences, both deal with problems involving a large number of degrees of freedom. Thus, it is not surprising that the same techniques may be useful in both fields. This work addresses problems in these two areas and it is essentially divided in two parts. The first part is devoted to the study of field theories with an anisotropy between space and time, which implies a breaking of the Lorentz symmetry. One of the moti- vations for considering this kind of theory is precisely the study of phase transitions in condensed matter systems. Renormalization group analysis with emphasis on the possi- bility of restoration of the Lorentz symmetry and also a discussion about Ward identities are performed. In the second part, the attention is centered on statistical mechanics but with an approach typical of field theory, in particular, focused to the study of classical and quantum phase transitions from the quantized version of the spherical model and its supersymmetric extension.
|
4 |
Parametric representation of Feynman amplitudes in gauge theoriesSars, Matthias Christiaan Bernhard 24 September 2015 (has links)
In dieser Arbeit wird eine systematische Methode gegeben um die Amplituden in (skalarer) Quantenelektrodynamik und nicht-Abelsche Eichtheorien in Schwinger-parametrische Form zu schreiben. Dies wird erreicht in dem der Zähler der Feynmanregeln im Impulsraum in einem Differentialoperator umgewandelt wird. Dieser Differentialoperator wirkt dann auf den parametrichen Integranden der skalaren Theorie. Für die QED ist das am einfachsten, weil die Leibnizregel hier nicht nötig ist. Im Fall der sQED und den nicht-Abelsche Eichtheorien stehen die Beiträge der Leibnizregel in Verbindung mit 4-valente Vertices. Eine andere Eigenschaft dieser Methode ist, dass mit dem hier benutzten Renormierungsschema die Subtraktionen für 1-scale Graphen signifikante Vereinfachungen verursachen. Weiterhin wurden die Ward-Identitäte für die genannten drei Theorien studiert. / In this thesis a systematic method is given for writing the amplitudes in (scalar) quantum electrodynamics and non-Abelian gauge theories in Schwinger parametric form. This is done by turning the numerator of the Feynman rules in momentum space into a differential operator. It acts then on the parametric integrand of the scalar theory. For QED it is the most straightforward, because the Leibniz rule is not involved here. In the case of sQED and non-Abelian gauge theories, the contributions from the Leibniz rule are satisfyingly related to 4-valent vertices. Another feature of this method is that in the used renormalization scheme, the subtractions for 1-scale graphs cause significant simplifications. Furthermore, the Ward identities for mentioned three theories are studied.
|
5 |
Aspectos de Teoria de Campos e Mecânica Estatística / Aspects of Field Theory and Statistical MechanicsPedro Rogério Sergi Gomes 15 February 2013 (has links)
A teoria quântica de campos pode ser vista como um conjunto de métodos e idéias que além de sua importância no estudo das partículas elementares, tem sido amplamente usada em outras áreas. Em especial, ela constitui uma ferramenta indispensável no estudo moderno de transições de fases e fenômenos críticos. A origem dessa constante relação entre a teoria de campos e a matéria condensada deve-se ao fato que, apesar de suas diferenças superficiais, ambas tratam de problemas envolvendo um grande número de graus de liberdade. Assim, não é surpreendente que as mesmas técnicas possam ser úteis nos dois campos. Este trabalho trata de problemas nessas duas áreas e está essencialmente divido em duas partes. A primeira parte é dedicada ao estudo de teorias de campos com uma anisotropia entre o espaço e o tempo, o que implica uma quebra da simetria de Lorentz. Uma das motivações para considerar esse tipo de teoria vem justamente do estudo de transições de fase em sistemas da matéria condensada. Análises do grupo de renormalização com ênfase na possibilidade de restauração da simetria de Lorentz e também uma discussão sobre identidades de Ward são realizadas. Na segunda parte, a atenção é voltada para a mecânica estatística mas com uma abordagem típica da teoria de campos, em especial, voltada para o estudo de transições de fase clássicas e quânticas a partir da versão quantizada do modelo esférico e de sua extensão supersimétrica. / Quantum field theory can be seen as a set of methods and ideas that, besides its importance in the study of the elementary particles, has been widely used in other areas. In particular, it constitutes an indispensable framework in the modern approach to phase transitions and critical phenomena. The origin of this constant relationship between field theory and condensed matter is due to the fact that despite their superficial differences, both deal with problems involving a large number of degrees of freedom. Thus, it is not surprising that the same techniques may be useful in both fields. This work addresses problems in these two areas and it is essentially divided in two parts. The first part is devoted to the study of field theories with an anisotropy between space and time, which implies a breaking of the Lorentz symmetry. One of the moti- vations for considering this kind of theory is precisely the study of phase transitions in condensed matter systems. Renormalization group analysis with emphasis on the possi- bility of restoration of the Lorentz symmetry and also a discussion about Ward identities are performed. In the second part, the attention is centered on statistical mechanics but with an approach typical of field theory, in particular, focused to the study of classical and quantum phase transitions from the quantized version of the spherical model and its supersymmetric extension.
|
6 |
Superconformal quantum field theories in stringWiegandt, Konstantin 25 October 2012 (has links)
In dieser Dissertation werden Aspekte von superkonformen Quantenfeldtheorien untersucht, die für die sogenannte AdS/CFT Korrespondenz relevant sind. Die AdS/CFT Korrespondenz beschreibt eine Dualität zwischen Stringtheorien im Anti-de Sitter Raum und superkonformen Quantenfeldtheorien im Minkowskiraum. In diesem Kontext wurde die sog. Wilsonschleifen / Amplituden Dualität entdeckt, die die Übereinstimmung von n-Gluon MHV Amplituden und n-seitigen polygonalen Wilsonschleifen in der N=4 supersymmetrischen Yang-Mills (SYM) Theorie beschreibt. Im ersten Teil dieser Dissertation wird die Wilsonschleifenseite einer solchen möglichen Dualität in der N=6 superkonformen Chern-Simons (ABJM) Theorie untersucht. Das Hauptergebnis dieser Untersuchungen ist, dass der Erwartungswert der n-seitigen polygonalen Wilsonschleifen auf Einschleifenebene verschwindet, während er auf Zweischleifenebene in seiner funktionalen Form identisch zu der analogen Wilsonschleife in N=4 SYM auf Einschleifenniveau ist. Außerdem wird eine anomale konforme Wardidentität für Wilsonschleifen in Chern-Simons Theorie berechnet. Zudem werden die damit im Zusammenhang stehenden Entwicklungen für Amplituden und Korrelatoren in der ABJM Theorie diskutiert. Im zweiten Teil dieser Dissertation werden Dreipunktfunktionen von zwei geschützten Operatoren und einem Twist-Zwei Operator mit beleibigem Spin j in der N=4 SYM Theorie berechnet. Dafür werden die Indizes des Spin j Operators auf den Lichtkegel projiziert und der Korrelator wird in einem Grenzfall untersucht in dem der Impuls der bei dem Spin j Operator einfließt verschwindet. Dieser Grenzfall vereinfacht die perturbative Berechnung erheblich, da alle Dreipunktdiagramme effektiv auf Zweipunktdiagramme reduziert werden und die Abhängigkeit der Mischungsmatrix auf Einschleifenebene herausfällt. Das Ergebnis stimmt mit der Analyse der Operatorproduktentwicklung von Vierpunktfunktionen geschützter Operatoren von Dolan und Osborn aus dem Jahre 2004 überein. / In this thesis aspects of superconformal field theories that are of interest in the so-called AdS/CFT correspondence are investivated. The AdS/CFT correspondence states a duality between string theories living on Anti-de Sitter space and superconformal quantum field theories in Minkowski space. In the context of the AdS/CFT correspondence the so-called Wilson loop / amplitude duality was discovered, stating the equality of the finite parts of n-gluon MHV amplitudes and n-sided lightlike polygonal Wilson loops in N=4 supersymmetric Yang-Mills (SYM) theory. It is the subject of the first part of this thesis to investigate the Wilson loop side of a possible similar duality in N=6 superconformal Chern-Simons matter (ABJM) theory. The main result is, that the expectation value of n-sided lightlike polygonal Wilson loops vanishes at one-loop order and at two-loop order is identical in its functional form to the Wilson loop in N=4 SYM theory at one-loop order. Furthermore, an anomalous conformal Ward identity for Wilson loops in Chern-Simons theory is derived. Related developments and symmetries of amplitudes and correlators in ABJM theory are discussed as well. In the second part of this thesis we calculate three-point functions of two protected operators and one twist-two operator with arbitrary even spin j in N =4 SYM theory. In order to carry out the calculations, the indices of the spin j operator are projected to the light-cone and the correlator is evaluated in a soft-limit where the momentum coming in at the spin j operator becomes zero. This limit largely simplifies the perturbative calculation, since all three-point diagrams effectively reduce to two-point diagrams and the dependence on the one-loop mixing matrix drops out completely. The result is in agreement with the analysis of the operator product expansion of four-point functions of half-BPS operators by Dolan and Osborn in 2004.
|
7 |
Renormalization of Gauge Theories and GravityPrinz, David Nicolas 22 November 2022 (has links)
Wir studieren die perturbative Quantisierung von Eichtheorien und Gravitation. Unsere Untersuchungen beginnen mit der Geometrie von Raumzeiten und Teilchenfeldern. Danach diskutieren wir die verschiedenen Lagrangedichten in der Kopplung der (effektiven) Quanten-Allgemeinen-Relativitätstheorie zum Standardmodell. Desweiteren studieren wir den zugehörigen BRST-Doppelkomplex von Diffeomorphismen und Eichtransformationen. Danach wenden wir Connes--Kreimer-Renormierungstheorie auf die perturbative Feynmangraph-Entwicklung an: In dieser Formulierung werden Subdivergenzen mittels des Koprodukts einer Hopfalgebra strukturiert und die Renormierungsoperation mittels einer algebraischen Birkhoff-Zerlegung beschrieben. Dafür verallgemeinern und verbessern wir bekannte Koprodukt-Identitäten und ein Theorem von van Suijlekom (2007), das (verallgemeinerte) Eichsymmetrien mit Hopfidealen verbindet. Insbesondere lässt sich unsere Verallgemeinerung auf Gravitation anwenden, wie von Kreimer (2008) vorgeschlagen. Darüberhinaus sind unsere Resultate anwendbar auf Theorien mit mehreren Vertexresuiden, Kopplungskonstanten und ebensolchen mit einer transversalen Struktur. Zusätzlich zeigen wir Kriterien für die Kompatibilität dieser Hopfideale mit Feynmanregeln und dem gewählten Renormierungsschema. Als nächsten Schritt berechnen wir die entsprechenden Gravitations-Materie Feynmanregeln für alle Vertexvalenzen und mit einem allgemeinen Eichparameter. Danach listen wir alle Propagator- und dreivalenten Vertex-Feynmanregeln auf und berechnen die entsprechenden Kürzungsidentitäten. Abschließend stellen wir geplante Folgeprojekte vor: Diese schließen eine Verallgemeinerung von Wigners Klassifikation von Elementarteilchen für linearisierte Gravitation ein, ebenso wie die Darstellung von Kürzungsidentitäten mittels Feynmangraph-Kohomologie und eine Untersuchung der Äquivalenz verschiedener Definitionen des Gravitonfeldes. Insbesondere argumentieren wir, dass das richtige Setup um perturbative BRST-Kohomologie zu studieren eine differentialgraduierte Hopfalgebra ist. / We study the perturbative quantization of gauge theories and gravity. Our investigations start with the geometry of spacetimes and particle fields. Then we discuss the various Lagrange densities of (effective) Quantum General Relativity coupled to the Standard Model. In addition, we study the corresponding BRST double complex of diffeomorphisms and gauge transformations. Next we apply Connes--Kreimer renormalization theory to the perturbative Feynman graph expansion: In this framework subdivergences are organized via the coproduct of a Hopf algebra and the renormalization operation is described as an algebraic Birkhoff decomposition. To this end, we generalize and improve known coproduct identities and a theorem of van Suijlekom (2007) that relates (generalized) gauge symmetries to Hopf ideals. In particular, our generalization applies to gravity, as was suggested by Kreimer (2008). In addition, our results are applicable to theories with multiple vertex residues, coupling constants and such with a transversal structure. Additionally, we also provide criteria for the compatibility of these Hopf ideals with Feynman rules and the chosen renormalization scheme. We proceed by calculating the corresponding gravity-matter Feynman rules for any valence and with a general gauge parameter. Then we display all propagator and three-valent vertex Feynman rules and calculate the respective cancellation identities. Finally, we propose planned follow-up projects: This includes a generalization of Wigner's classification of elementary particles to linearized gravity, the representation of cancellation identities via Feynman graph cohomology and an investigation on the equivalence of different definitions for the graviton field. In particular, we argue that the appropriate setup to study perturbative BRST cohomology is a differential-graded Hopf algebra.
|
Page generated in 0.0922 seconds