• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Parametric representation of Feynman amplitudes in gauge theories

Sars, Matthias Christiaan Bernhard 24 September 2015 (has links)
In dieser Arbeit wird eine systematische Methode gegeben um die Amplituden in (skalarer) Quantenelektrodynamik und nicht-Abelsche Eichtheorien in Schwinger-parametrische Form zu schreiben. Dies wird erreicht in dem der Zähler der Feynmanregeln im Impulsraum in einem Differentialoperator umgewandelt wird. Dieser Differentialoperator wirkt dann auf den parametrichen Integranden der skalaren Theorie. Für die QED ist das am einfachsten, weil die Leibnizregel hier nicht nötig ist. Im Fall der sQED und den nicht-Abelsche Eichtheorien stehen die Beiträge der Leibnizregel in Verbindung mit 4-valente Vertices. Eine andere Eigenschaft dieser Methode ist, dass mit dem hier benutzten Renormierungsschema die Subtraktionen für 1-scale Graphen signifikante Vereinfachungen verursachen. Weiterhin wurden die Ward-Identitäte für die genannten drei Theorien studiert. / In this thesis a systematic method is given for writing the amplitudes in (scalar) quantum electrodynamics and non-Abelian gauge theories in Schwinger parametric form. This is done by turning the numerator of the Feynman rules in momentum space into a differential operator. It acts then on the parametric integrand of the scalar theory. For QED it is the most straightforward, because the Leibniz rule is not involved here. In the case of sQED and non-Abelian gauge theories, the contributions from the Leibniz rule are satisfyingly related to 4-valent vertices. Another feature of this method is that in the used renormalization scheme, the subtractions for 1-scale graphs cause significant simplifications. Furthermore, the Ward identities for mentioned three theories are studied.

Page generated in 0.0971 seconds