• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 4
  • 4
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

偏平軸・円板系の内部共振現象 (主危険速度付近とその3倍付近)

石田, 幸男, ISHIDA, Yukio, 井上, 剛志, INOUE, Tsuyoshi, 大石, 真嗣, OISHI, Masatsugu 06 1900 (has links)
No description available.
2

回転軸系のカオス振動と内部共振現象 (和差調波共振と1/2次分数調波共振の共振点が近接する場合)

井上, 剛志, INOUE, Tsuyoshi, 石田, 幸男, ISHIDA, Yukio, 村山, 拓仁, MURAYAMA, Takuji 08 1900 (has links)
No description available.
3

A Theoretical and Experimental Study of Nonlinear Dynamics of Buckled Beams

Emam, Samir A. 09 January 2003 (has links)
We investigate theoretically and experimentally the nonlinear responses of a clamped-clamped buckled beam to a variety of external harmonic excitations and internal resonances. We assume that the beam geometry is uniform and its material is homogeneous. We initially buckle the beam by an axial force beyond the critical load of the first buckling mode, and then we apply a transverse harmonic excitation that is uniform over its span. The beam is modeled according to the Euler-Bernoulli beam theory and small strains and moderate rotation approximations are assumed. We derive the equation of motion governing the nonlinear transverse planar vibrations and associated boundary conditions using the extended Hamilton's principle. The governing equation is a nonlinear integral-partial-differential equation in space and time that possesses quadratic and cubic nonlinearities. A closed-form solution for such equations is not available and hence we seek approximate solutions. We use perturbation methods to investigate the slow dynamics in the neighborhood of an equilibrium configuration. A Galerkin approximation is used to discretize the nonlinear partial-differential equation governing the beam's response and obtain a set of nonlinearly coupled ordinary-differential equations governing the time evolution of the response. We based our theory on a multi-mode Galerkin discretization. To investigate the large-amplitude dynamics, we use a shooting method to numerically integrate the discretized equations and obtain periodic orbits. The stability and bifurcations of these periodic orbits are investigated using Floquet theory. We solve the nonlinear buckling problem to determine the buckled configurations as a function of the applied axial load. We compare the static buckled configurations obtained from the discretized equations with the exact ones. We find out that the number of modes retained in the discretization has a significant effect on these static configurations. We consider three cases: primary resonance, subharmonic resonance of order one-half of the first vibration mode, and one-to-one internal resonance between the first and second modes. We obtain interesting dynamics, such as phase-locked and quasiperiodic motions, resulting from a Hopf bifurcation, snapthrough motions, and a sequence of period-doubling bifurcations leading to chaos. To validate our theoretical results, we ran an experiment, which is a modified version of the experiment designed by Kreider and Nayfeh. We find that the obtained theoretical results are in good qualitative agreement with the experimental results. In the case of one-to-one internal resonance, we report, theoretically and experimentally, energy transfer between the first mode, which is externally excited, and the second mode. / Ph. D.
4

Modeling, Simulation, and Analysis of Micromechanical Filters Coupled with Capacitive Transducers

Hammad, Bashar Khalil 06 June 2008 (has links)
The first objective of this Dissertation is to present a methodology to calculate analytically the mode shapes and corresponding natural frequencies and determine critical buckling loads of mechanically coupled microbeam resonators with a focus on micromechanical filters. The second objective is to adopt a nonlinear approach to build a reduced-order model and obtain closed-form expressions for the response of the filter to a primary resonance. The third objective is to investigate the feasibility of employing subharmonic excitation to build bandpass filters consisting of either two sets of two beams coupled mechanically or two sets of clamped-clamped beams. Throughout this Dissertation, we treat filters as distributed-parameter systems. In the first part of the Dissertation, we demonstrate the methodology by considering a mechanical filter composed of two beams coupled by a weak beam. We solve a boundary-value problem (BVP) composed of five equations and twenty boundary conditions for the natural frequencies and mode shapes. We reduce the problem to a set of three linear homogeneous algebraic equations for three constants and the frequencies in order to obtain a deeper insight into the relation between the design parameters and the performance metrics. In an approach similar to the vibration problem, we solve the buckling problem to study the effect of the residual stress on the static stability of the structure. To achieve the second objective, we develop a reduced-order model for the filter by writing the Lagrangian and applying the Galerkin procedure using its analytically calculated linear global mode shapes as basis functions. The resulting model accounts for the geometric and electric nonlinearities and the coupling between them. Using the method of multiple scales, we obtain closed-form expressions for the deflection and the electric current in the case of one-to-one internal and primary resonances. The closed-form solution shows that there are three possible operating ranges, depending on the DC voltage. For low DC voltages, the effective nonlinearity is positive and the filter behavior is hardening, whereas for large DC voltages, the effective nonlinearity is negative and the filter behavior is softening. We found that, when mismatched DC voltages are applied to the primary resonators, the first mode is localized in the softer resonator and the second mode is localized in the stiffer resonator. We note that the excitation amplitude can be increased without worrying about the appearance of multivaluedness when operating the filter in the near-linear range. The upper bound in this case is the occurrence of the dynamic pull-in instability. In the softening and hardening operating ranges, the adverse effects of the multi-valued response, such as hysteresis and jumps, limit the range of the input signal. To achieve the third objective, we propose a filtration technique based on subharmonic resonance excitation to attain bandpass filters with ideal stopband rejection and sharp rolloff. The filtration mechanism depends on tuning two oscillators such that one operates in the softening range and the other operates in the hardening range. Hardware and logic schemes are necessary to realize the proposed filter. We derive a reduced-order model using a methodology similar to that used in the primary excitation case, but with all necessary changes to account for the subharmonic resonance of order one-half. We observe that some manipulations are essential for a structure of two beams coupled by a weak spring to be suitable for filtration. To avoid these complications, we use a pair of single clamped-clamped beams to achieve our goal. Using a model derived by attacking directly the distributed-parameters problem, we suggest design guidelines to select beams that are potential candidates for building a bandpass filter. We demonstrate the proposed mechanism using an example. / Ph. D.

Page generated in 0.0451 seconds