1 |
Nonlinear aeroelastic analysis of aircraft wing-with-store configurationsKim, Kiun 30 September 2004 (has links)
The author examines nonlinear aeroelastic responses of air vehicle systems. Herein, the governing equations for a cantilevered configuration are developed and the methods of analysis are explored. Based on the developed nonlinear bending-bending-torsion equations, internal resonance, which is possible in future air vehicles, and the possible cause of limit cycle oscillations of aircraft wings with stores are investigated. The nonlinear equations have three types of nonlinearities caused by wing flexibility, store geometry and aerodynamic stall, and retain up to third-order nonlinear terms. The internal resonance conditions are examined by the Method of Multiple Scales and demonstrated by time simulations. The effect of velocity change for various physical parameters and stiffness ratio is investigated through bifurcation diagrams derived from Poinar´e maps. The dominant factor causing limit cycle oscillations is the stiffness ratio between in-plane and out-of-plane motion.
|
2 |
偏平軸・円板系の内部共振現象 (主危険速度付近とその3倍付近)石田, 幸男, ISHIDA, Yukio, 井上, 剛志, INOUE, Tsuyoshi, 大石, 真嗣, OISHI, Masatsugu 06 1900 (has links)
No description available.
|
3 |
回転軸系におけるカオス振動と内部共振現象(主危険速度付近)井上, 剛志, INOUE, Tsuyoshi, 石田, 幸男, ISHIDA, Yukio, 近藤, 健二, KONDO, Kenji 02 1900 (has links)
No description available.
|
4 |
Nonlinear aeroelastic analysis of aircraft wing-with-store configurationsKim, Kiun 30 September 2004 (has links)
The author examines nonlinear aeroelastic responses of air vehicle systems. Herein, the governing equations for a cantilevered configuration are developed and the methods of analysis are explored. Based on the developed nonlinear bending-bending-torsion equations, internal resonance, which is possible in future air vehicles, and the possible cause of limit cycle oscillations of aircraft wings with stores are investigated. The nonlinear equations have three types of nonlinearities caused by wing flexibility, store geometry and aerodynamic stall, and retain up to third-order nonlinear terms. The internal resonance conditions are examined by the Method of Multiple Scales and demonstrated by time simulations. The effect of velocity change for various physical parameters and stiffness ratio is investigated through bifurcation diagrams derived from Poinar´e maps. The dominant factor causing limit cycle oscillations is the stiffness ratio between in-plane and out-of-plane motion.
|
5 |
回転軸系のカオス振動と内部共振現象 (和差調波共振と1/2次分数調波共振の共振点が近接する場合)井上, 剛志, INOUE, Tsuyoshi, 石田, 幸男, ISHIDA, Yukio, 村山, 拓仁, MURAYAMA, Takuji 08 1900 (has links)
No description available.
|
6 |
幾何学的非線形ばね特性をもつ連続偏平軸の強制振動 (主危険速度と二次的危険速度付近)長坂, 今夫, NAGASAKA, Imao, 石田, 幸男, ISHIDA, Yukio, 劉, 軍, LIU, Jun, 服部, 卓也, HATTORI, Takuya 12 1900 (has links)
No description available.
|
7 |
Theoretical Characterization of Internal Resonance in Micro-Electro-Mechanical Systems (MEMS)Xue, Linfeng January 2020 (has links)
No description available.
|
8 |
A Theoretical and Experimental Study of Nonlinear Dynamics of Buckled BeamsEmam, Samir A. 09 January 2003 (has links)
We investigate theoretically and experimentally the nonlinear responses of a clamped-clamped buckled beam to a variety of external harmonic excitations and internal resonances. We assume that the beam geometry is uniform and its material is homogeneous. We initially buckle the beam by an axial force beyond the critical load of the first buckling mode, and then we apply a transverse harmonic excitation that is uniform over its span. The beam is modeled according to the Euler-Bernoulli beam theory and small strains and moderate rotation approximations are assumed. We derive the equation of motion governing the nonlinear transverse planar vibrations and associated boundary conditions using the extended Hamilton's principle. The governing equation is a nonlinear integral-partial-differential equation in space and time that possesses quadratic and cubic nonlinearities. A closed-form solution for such equations is not available and hence we seek approximate solutions.
We use perturbation methods to investigate the slow dynamics in the neighborhood of an equilibrium configuration. A Galerkin approximation is used to discretize the nonlinear partial-differential equation governing the beam's response and obtain a set of nonlinearly coupled ordinary-differential equations governing the time evolution of the response. We based our theory on a multi-mode Galerkin discretization. To investigate the large-amplitude dynamics, we use a shooting method to numerically integrate the discretized equations and obtain periodic orbits. The stability and bifurcations of these periodic orbits are investigated using Floquet theory.
We solve the nonlinear buckling problem to determine the buckled configurations as a function of the applied axial load. We compare the static buckled configurations obtained from the discretized equations with the exact ones. We find out that the number of modes retained in the discretization has a significant effect on these static configurations.
We consider three cases: primary resonance, subharmonic resonance of order one-half of the first vibration mode, and one-to-one internal resonance between the first and second modes.
We obtain interesting dynamics, such as phase-locked and quasiperiodic motions, resulting from a Hopf bifurcation, snapthrough motions, and a sequence of period-doubling bifurcations leading to chaos.
To validate our theoretical results, we ran an experiment, which is a modified version of the experiment designed by Kreider and Nayfeh. We find that the obtained theoretical results are in good qualitative agreement with the experimental results. In the case of one-to-one internal resonance, we report, theoretically and experimentally, energy transfer between the first mode, which is externally excited, and the second mode. / Ph. D.
|
9 |
重力と非線形ばね特性の作用を受ける偏平軸の振動 (内部共振の影響)石田, 幸男, ISHIDA, Yukio, 井上, 剛志, INOUE, Tsuyoshi, 劉, 軍, LIU, Jun, 鈴木, 昭宏, SUZUKI, Akihiro 11 1900 (has links)
No description available.
|
10 |
[en] INFLUENCE OF INITIAL GEOMETRIC IMPERFECTIONS ON THE INTERNAL RESONANCES AND NON-LINEAR VIBRATIONS OF THIN-WALLED CYLINDRICAL SHELLS / [pt] INFLUÊNCIA DE IMPERFEIÇÕES GEOMÉTRICAS INICIAIS NAS RESSONÂNCIAS INTERNAS E VIBRAÇÕES NÃO LINEARES DE CASCAS CILÍNDRICAS ESBELTASLARA RODRIGUES 30 November 2018 (has links)
[pt] A análise das ressonâncias internas em sistemas estruturais contínuos é uma das principais áreas de pesquisa no campo da dinâmica não linear. A ressonância interna entre dois modos de vibração ocorre quando a proporção de suas frequências naturais é um número inteiro. De particular importância, devido à sua influência na resposta estrutural, é a ressonância interna 1:1, geralmente associada às simetrias do sistema, a ressonância interna 1:2, devida às não linearidades quadráticas e a ressonância 1:3 decorrente de não linearidades cúbicas. A ressonância interna permite a transferência de energia entre os modos de vibração relacionados, levando geralmente a novos fenômenos com profunda influência sobre a estabilidade da resposta dinâmica. As cascas de revolução geralmente exibem ressonâncias internas devido à inerente simetria circunferencial e um denso espectro de frequência em sua faixa de frequências mais baixas. Isso pode levar não apenas a ressonâncias internas do tipo m:n, mas a múltiplas ressonâncias internas. Nesta tese é realizada a análise de múltiplas ressonâncias internas em cascas cilíndricas delgadas, em particular as ressonâncias internas de 1:1:1:1 e 1:1:2:2 são investigadas em detalhes, um tópico pouco explorado na literatura técnica. A investigação de ressonâncias internas em sistemas contínuos geralmente é realizada usando modelos discretos de baixa dimensão. Embora alguns trabalhos anteriores tenham investigado ressonâncias internas do tipo m:n em cascas cilíndricas, muitos resultados não são consistentes, uma vez que os modelos discretos derivados não consideram os acoplamentos modais devido a não linearidades quadráticas e cúbicas. Aqui, usando um procedimento de perturbação, expansões modais consistentes são derivadas para um número arbitrário de modos de interação, levando a modelos de baixa dimensão confiáveis. A precisão desses modelos é corroborada usando o método Karhunen-Loève. Finalmente, é bem sabido que pequenas imperfeições geométricas da ordem da espessura da casca têm uma forte influência na sua resposta não linear. No entanto, sua influência nas ressonâncias internas, instabilidade dinâmica e transferência de energia é desconhecida. Assim, a influência de diferentes tipos de imperfeição modal é devidamente considerada na presente análise. Utilizando os modelos discretos aqui derivados, é apresentada uma análise detalhada das bifurcações, utilizando técnicas de continuação e o critério de estabilidade de Floquet, esclarecendo a importância das ressonâncias internas nas vibrações não lineares e instabilidades de cascas cilíndricas. Os resultados também confirmam que a forma e a magnitude das imperfeições geométricas iniciais têm uma influência profunda nos resultados, permitindo ou impedindo a transferência de energia entre os modos ressonantes considerados. / [en] The analysis of internal resonances in continuous structural systems is one of the main research areas in the field of nonlinear dynamics. Internal resonance between two vibration modes occur when the ratio of their natural frequencies in an integer number. Of particular importance, due to its influence on the structural response, is the 1:1 internal resonance, usually associated with system symmetries, the 1:2 internal resonance, due to quadratic nonlinearities, and the 1:3 resonance arising from cubic nonlinearities. The internal resonance enables the energy transfer between the related vibration modes, leading usually to new phenomena with profound influence on the stability of the dynamic response. Shells of revolution usually exhibit internal resonances due to the inherent circumferential symmetry and a dense frequency spectrum in their lower frequency range. This may lead not only to m:n internal resonances, but also multiple internal resonances. In this thesis, the analysis of multiple internal resonances in slender cylindrical shells is conducted, in particular 1:1:1:1 and 1:1:2:2 internal resonances are investigated in detail, a topic rarely found in the technical literature. The investigation of internal resonances in continuous systems is usually conducted using low dimensional discrete models. Although some previous works have investigated m:n internal resonances in cylindrical shells, many results are not consistent since the derived discrete models do not consider the modal couplings due to quadratic and cubic nonlinearities. Here, using a perturbation procedure, consistent modal expansions are derived for an arbitrary number of interacting modes, leading to reliable low dimensional models. The accuracy of these models is corroborated using the Karhunen-Loève method. Finally, it is well known that small geometric imperfections of the order of the shell thickness has a strong influence on the shell nonlinear response. However, their influence on internal resonances, dynamic instability and energy transfer is largely unknown. Thus, the influence of different types of modal imperfection is properly considered in the present analysis. Using the derived discrete models, a detail bifurcation analysis, using continuation techniques and Floquet stability criterion, is presented, clarifying the importance of internal resonances on the nonlinear vibrations and instabilities of cylindrical shells. The results also confirm that the form and magnitude of initial geometric imperfections has a profound influence on the results enabling or preventing the energy transfer among the considered resonant modes.
|
Page generated in 0.1252 seconds