1 |
Iteration as an avenue for mathematical explorationJoyoprayitno, Anne Christine 12 December 2013 (has links)
This report explores several applications of iteration and the various connections that can be made to different areas of mathematics. The ties iteration has to the Wada Property, bifurcation diagram, root finding, and applications in geometry are all investigated. Finally, a rationale for incorporating iteration into secondary mathematics courses to support a more robust curriculum is discussed. / text
|
2 |
Nonlinear aeroelastic analysis of aircraft wing-with-store configurationsKim, Kiun 30 September 2004 (has links)
The author examines nonlinear aeroelastic responses of air vehicle systems. Herein, the governing equations for a cantilevered configuration are developed and the methods of analysis are explored. Based on the developed nonlinear bending-bending-torsion equations, internal resonance, which is possible in future air vehicles, and the possible cause of limit cycle oscillations of aircraft wings with stores are investigated. The nonlinear equations have three types of nonlinearities caused by wing flexibility, store geometry and aerodynamic stall, and retain up to third-order nonlinear terms. The internal resonance conditions are examined by the Method of Multiple Scales and demonstrated by time simulations. The effect of velocity change for various physical parameters and stiffness ratio is investigated through bifurcation diagrams derived from Poinar´e maps. The dominant factor causing limit cycle oscillations is the stiffness ratio between in-plane and out-of-plane motion.
|
3 |
Design and Implementation of a Controller for an Electrostatic MEMS Actuator and SensorSeleim, Abdulrahman Saad January 2010 (has links)
An analog controller has been analyzed and built for an electrostatic micro-cantilever
beam. The closed loop MEMS device can be used as both actuator and sensor. As an
actuator it will have the advantage of large stable travel range up to 90% of the gap. As a
sensor the beam is to be driven into chaotic motion which is very sensitive changes in the
system parameters.
Two versions of the controller have been analyzed and implemented, one for the actuator
and one for the sensor. For the actuator, preliminary experiments show good matching
with the model. As for the sensor, the dynamic behavior have been studied and the best
operating regions have been determined.
|
4 |
Nonlinear aeroelastic analysis of aircraft wing-with-store configurationsKim, Kiun 30 September 2004 (has links)
The author examines nonlinear aeroelastic responses of air vehicle systems. Herein, the governing equations for a cantilevered configuration are developed and the methods of analysis are explored. Based on the developed nonlinear bending-bending-torsion equations, internal resonance, which is possible in future air vehicles, and the possible cause of limit cycle oscillations of aircraft wings with stores are investigated. The nonlinear equations have three types of nonlinearities caused by wing flexibility, store geometry and aerodynamic stall, and retain up to third-order nonlinear terms. The internal resonance conditions are examined by the Method of Multiple Scales and demonstrated by time simulations. The effect of velocity change for various physical parameters and stiffness ratio is investigated through bifurcation diagrams derived from Poinar´e maps. The dominant factor causing limit cycle oscillations is the stiffness ratio between in-plane and out-of-plane motion.
|
5 |
Design and Implementation of a Controller for an Electrostatic MEMS Actuator and SensorSeleim, Abdulrahman Saad January 2010 (has links)
An analog controller has been analyzed and built for an electrostatic micro-cantilever
beam. The closed loop MEMS device can be used as both actuator and sensor. As an
actuator it will have the advantage of large stable travel range up to 90% of the gap. As a
sensor the beam is to be driven into chaotic motion which is very sensitive changes in the
system parameters.
Two versions of the controller have been analyzed and implemented, one for the actuator
and one for the sensor. For the actuator, preliminary experiments show good matching
with the model. As for the sensor, the dynamic behavior have been studied and the best
operating regions have been determined.
|
6 |
Uncertainty in the Bifurcation Diagram of a Model of Heart Rhythm DynamicsRing, Caroline January 2014 (has links)
<p>To understand the underlying mechanisms of cardiac arrhythmias, computational models are used to study heart rhythm dynamics. The parameters of these models carry inherent uncertainty. Therefore, to interpret the results of these models, uncertainty quantification (UQ) and sensitivity analysis (SA) are important. Polynomial chaos (PC) is a computationally efficient method for UQ and SA in which a model output Y, dependent on some independent uncertain parameters represented by a random vector ξ, is approximated as a spectral expansion in multidimensional orthogonal polynomials in ξ. The expansion can then be used to characterize the uncertainty in Y.</p><p>PC methods were applied to UQ and SA of the dynamics of a two-dimensional return-map model of cardiac action potential duration (APD) restitution in a paced single cell. Uncertainty was considered in four parameters of the model: three time constants and the pacing stimulus strength. The basic cycle length (BCL) (the period between stimuli) was treated as the control parameter. Model dynamics was characterized with bifurcation analysis, which determines the APD and stability of fixed points of the model at a range of BCLs, and the BCLs at which bifurcations occur. These quantities can be plotted in a bifurcation diagram, which summarizes the dynamics of the model. PC UQ and SA were performed for these quantities. UQ results were summarized in a novel probabilistic bifurcation diagram that visualizes the APD and stability of fixed points as uncertain quantities.</p><p>Classical PC methods assume that model outputs exist and reasonably smooth over the full domain of ξ. Because models of heart rhythm often exhibit bifurcations and discontinuities, their outputs may not obey the existence and smoothness assumptions on the full domain, but only on some subdomains which may be irregularly shaped. On these subdomains, the random variables representing the parameters may no longer be independent. PC methods therefore must be modified for analysis of these discontinuous quantities. The Rosenblatt transformation maps the variables on the subdomain onto a rectangular domain; the transformed variables are independent and uniformly distributed. A new numerical estimation of the Rosenblatt transformation was developed that improves accuracy and computational efficiency compared to existing kernel density estimation methods. PC representations of the outputs in the transformed variables were then constructed. Coefficients of the PC expansions were estimated using Bayesian inference methods. For discontinuous model outputs, SA was performed using a sampling-based variance-reduction method, with the PC estimation used as an efficient proxy for the full model.</p><p>To evaluate the accuracy of the PC methods, PC UQ and SA results were compared to large-sample Monte Carlo UQ and SA results. PC UQ and SA of the fixed point APDs, and of the probability that a stable fixed point existed at each BCL, was very close to MC UQ results for those quantities. However, PC UQ and SA of the bifurcation BCLs was less accurate compared to MC results.</p><p>The computational time required for PC and Monte Carlo methods was also compared. PC analysis (including Rosenblatt transformation and Bayesian inference) required less than 10 total hours of computational time, of which approximately 30 minutes was devoted to model evaluations, compared to approximately 65 hours required for Monte Carlo sampling of the model outputs at 1 × 10<super>6</super> ξ points.</p><p>PC methods provide a useful framework for efficient UQ and SA of the bifurcation diagram of a model of cardiac APD dynamics. Model outputs with bifurcations and discontinuities can be analyzed using modified PC methods. The methods applied and developed in this study may be extended to other models of heart rhythm dynamics. These methods have potential for use for uncertainty and sensitivity analysis in many applications of these models, including simulation studies of heart rate variability, cardiac pathologies, and interventions.</p> / Dissertation
|
7 |
O uso da análise de Fourier, de Wavelets e dos expoentes de Lyapunov no estudo de um sistema dinâmico não-ideal com atrito seco e excitação externaChierice Júnior, Natale [UNESP] 19 March 2007 (has links) (PDF)
Made available in DSpace on 2014-06-11T19:25:32Z (GMT). No. of bitstreams: 0
Previous issue date: 2007-03-19Bitstream added on 2014-06-13T18:28:57Z : No. of bitstreams: 1
chiericejunior_n_me_rcla.pdf: 1353573 bytes, checksum: 0d3edbeeb7136f9b5dedb120c4e1f5d6 (MD5) / As oscilações mecânicas quando interferem no comportamento de um sistema mecânico estão relacionadas à transferência de energia devido ao atrito. A dinâmica desses sistemas com atrito pode ser prejudicada com o surgimento de movimentos caóticos. O estudo do comportamento dinâmico dessas oscilações mecânicas é o objetivo deste trabalho e para isto propomos um sistema não-ideal que descreve um modelo físico que trata do movimento de um bloco e de um motor elétrico de corrente contínua. O bloco preso a um extremo de uma mola com o outro extremo preso a um suporte fixo está apoiado em uma correia movimentada pelo motor elétrico. Sofrendo influências da força de atrito, da força da mola e de uma força externa que age harmonicamente, o bloco muitas vezes interfere na velocidade angular do motor, causando comportamentos caóticos no sistema. Com simulações numéricas estudamos o sistema, usando a transformada rápida de Fourier, transformada wavelet, expoentes de Lyapunov, diagrama de bifurcação, seção de Poincaré, trajetórias de plano de fase e gráficos da posição do bloco em função do tempo, em busca das freqüências que fazem o bloco oscilar em movimentos periódicos e caóticos. A importância desse estudo está em mostrar que métodos distintos conduzem a um mesmo resultado. / The mechanical oscillations when they interfere in the behavior of a mechanical system are related to the transfer of energy due to the friction. The dynamics of such systems with friction can be harmed by the appearance of chaotic movements. The study of the dynamic behavior of those mechanical oscillations is the objective of this work and for this we proposed a non-ideal system that describes a physical model that treats the movement of a block and a direct current motor. The block locked to the end of a spring with the other end locked to a fixed support is rested in a belt moved by a direct current motor. Suffering influences of the friction force, the spring force and the external force that act harmoniously, the block many times interferes in the angular speed of the motor, causing chaotic behaviors in the system. With numeric simulations, we studied the system using the fast Fourier transform; wavelet transform, Lyapunov exponents, bifurcation diagram, Poincaré section, phase plane trajectories and graphs of the block position in time function, looking of the frequencies that make the block to oscillate in periodic and chaotic movements. The importance of such study is to show that different methods lead to a same result.
|
8 |
O uso da análise de Fourier, de Wavelets e dos expoentes de Lyapunov no estudo de um sistema dinâmico não-ideal com atrito seco e excitação externa /Chierice Júnior, Natale. January 2007 (has links)
Orientador: José Roberto Campanha / Banca: José Manoel Balthazar / Banca: Reyolando M.L.R.F. Brasil / Resumo: As oscilações mecânicas quando interferem no comportamento de um sistema mecânico estão relacionadas à transferência de energia devido ao atrito. A dinâmica desses sistemas com atrito pode ser prejudicada com o surgimento de movimentos caóticos. O estudo do comportamento dinâmico dessas oscilações mecânicas é o objetivo deste trabalho e para isto propomos um sistema não-ideal que descreve um modelo físico que trata do movimento de um bloco e de um motor elétrico de corrente contínua. O bloco preso a um extremo de uma mola com o outro extremo preso a um suporte fixo está apoiado em uma correia movimentada pelo motor elétrico. Sofrendo influências da força de atrito, da força da mola e de uma força externa que age harmonicamente, o bloco muitas vezes interfere na velocidade angular do motor, causando comportamentos caóticos no sistema. Com simulações numéricas estudamos o sistema, usando a transformada rápida de Fourier, transformada wavelet, expoentes de Lyapunov, diagrama de bifurcação, seção de Poincaré, trajetórias de plano de fase e gráficos da posição do bloco em função do tempo, em busca das freqüências que fazem o bloco oscilar em movimentos periódicos e caóticos. A importância desse estudo está em mostrar que métodos distintos conduzem a um mesmo resultado. / Abstract: The mechanical oscillations when they interfere in the behavior of a mechanical system are related to the transfer of energy due to the friction. The dynamics of such systems with friction can be harmed by the appearance of chaotic movements. The study of the dynamic behavior of those mechanical oscillations is the objective of this work and for this we proposed a non-ideal system that describes a physical model that treats the movement of a block and a direct current motor. The block locked to the end of a spring with the other end locked to a fixed support is rested in a belt moved by a direct current motor. Suffering influences of the friction force, the spring force and the external force that act harmoniously, the block many times interferes in the angular speed of the motor, causing chaotic behaviors in the system. With numeric simulations, we studied the system using the fast Fourier transform; wavelet transform, Lyapunov exponents, bifurcation diagram, Poincaré section, phase plane trajectories and graphs of the block position in time function, looking of the frequencies that make the block to oscillate in periodic and chaotic movements. The importance of such study is to show that different methods lead to a same result. / Mestre
|
9 |
Oscilador eletromagnético caóticoAmâncio, André Roberto [UNESP] 28 April 2008 (has links) (PDF)
Made available in DSpace on 2014-06-11T19:25:31Z (GMT). No. of bitstreams: 0
Previous issue date: 2008-04-28Bitstream added on 2014-06-13T18:28:54Z : No. of bitstreams: 1
amancio_ar_me_rcla.pdf: 1362954 bytes, checksum: c0d507d95ec4ae86f7f09a4330c991ad (MD5) / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) / Uma oscilação mecânica pode gerar movimentos caóticos através de vibrações irregulares. O estudo da oscilação mecânica caótica é o objetivo deste trabalho e para isto propomos um sistema eletro - magneto mecânico que descreve um modelo físico que trata do movimento de um fio em um campo magnético. Com simulações numéricas estudamos o sistema, usando a transformada rápida de Fourier, expoentes de Lyapunov, diagrama de bifurcação, seção de Poincaré, trajetórias de plano de fase e gráficos das posições do fio em função do tempo que oscila em movimentos periódicos e caóticos. / A mechanical oscillation can to generate chaotic movements through irregular vibrations. The study of chaotic mechanical oscillation is the objective of this work and for this we proposed a mechanical electro - magneto system that describes a physical model that treats the movement of a thread in a magnetic field. With numeric simulations, we studied the system using the fast Fourier transform, Lyapunov exponents, bifurcation diagram, Poincaré section, phase plane trajectories and graphs of the thread positions in time function that oscillate in periodic and chaotic movements.
|
10 |
Vibrações não lineares em tubulações com fluido em escoamento / Nonlinear movement in fluid flow pipesPrado, Joaquim Orlando 21 June 2013 (has links)
Submitted by Cássia Santos (cassia.bcufg@gmail.com) on 2017-01-17T12:39:40Z
No. of bitstreams: 3
Dissertação - Joaquim Orlando Parada (parte1) - 2013.pdf: 11591347 bytes, checksum: e970b2f0fffd5ccc2222bce05ea90d41 (MD5)
Dissertação - Joaquim Orlando Parada (parte 2) - 2013.pdf: 18027973 bytes, checksum: 6bdbe04565ae04f1d810137fc59f37e2 (MD5)
license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) / Approved for entry into archive by Luciana Ferreira (lucgeral@gmail.com) on 2017-01-18T10:31:58Z (GMT) No. of bitstreams: 3
Dissertação - Joaquim Orlando Parada (parte1) - 2013.pdf: 11591347 bytes, checksum: e970b2f0fffd5ccc2222bce05ea90d41 (MD5)
Dissertação - Joaquim Orlando Parada (parte 2) - 2013.pdf: 18027973 bytes, checksum: 6bdbe04565ae04f1d810137fc59f37e2 (MD5)
license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) / Made available in DSpace on 2017-01-18T10:31:58Z (GMT). No. of bitstreams: 3
Dissertação - Joaquim Orlando Parada (parte1) - 2013.pdf: 11591347 bytes, checksum: e970b2f0fffd5ccc2222bce05ea90d41 (MD5)
Dissertação - Joaquim Orlando Parada (parte 2) - 2013.pdf: 18027973 bytes, checksum: 6bdbe04565ae04f1d810137fc59f37e2 (MD5)
license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5)
Previous issue date: 2013-06-21 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES / In this work, the linear and nonlinear instability of pipes conveying static and pulsating fluid flow is analyzed. The dynamic equation of motion was derived for cantilevered and clamped-clamped pipes. For this purpose, the Euler Bernoulli beam theory and Hamilton’s principle were applied, resulting in a partial differential equation of second order in time. Thus, a model with four degrees of freedom, which satisfies the boundary condition, is used and, the Galekin method is applied to derive the set of coupled non linear ordinary equations of motion which are, in turn, solved by the fourth order Runge-Kutta method, and then some numerical results were obtained as Argand diagram, stability boudaries, time response, phase plane and, Poincaré section, through computational algorithms modeled in C++. These results revealed the importance of the nonlinear terms in the stability of the system, especially in the post-critical analysis, also revealed the existence of quasi-periodic motions, for the system subjected to a static flow and, chaotic motions for pulsating fluid flow / Nesta dissertação analisa-se a instabilidade linear e não linear de tubos com fluido interno em escoamento estático e pulsante. A equação de movimento dinâmico foi deduzida para tubos em balanço e biengastados. Para tanto, utilizou-se a teoria de vigas de Euler Bernoulli e o princípio variacional de Hamilton, resultado em uma equação diferencial parcial de segunda ordem no tempo. Tal equação foi discretizada, pelo método de Galerkin, em quatro equações diferenciais ordinárias, uma para cada grau de liberdade, em seguida transformadas em um conjunto de equações diferenciais de primeira ordem. Tais equações foram integradas pelo método de Runge-Kutta de quarta ordem e, posteriormente, foram obtidos alguns resultados numéricos como: diagrama de Argand, curvas de escape, diagrama de bifurcação, resposta no tempo, plano fase e, seção de Poincaré, através de algoritmos implementados computacionalmente na linguagem C++. Tais resultados revelaram a importância dos termos não lineares na estabilidade do sistema, especialmente na análise pós-crítica, revelaram também a existência de movimentos quase periódicos, para o sistema submetido a um fluxo estático e, caóticos para fluxo pulsante.
|
Page generated in 0.3527 seconds