• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 13
  • 6
  • 1
  • Tagged with
  • 23
  • 23
  • 13
  • 8
  • 8
  • 8
  • 7
  • 7
  • 6
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Optimization of Passive Constrained Layer Damping Treatments for Vibration Control of Cylindrical Shells

Zheng, H., Pau, G.S.H., Liu, Guirong 01 1900 (has links)
This paper presents the layout optimization of passive constrained layer damping (PCLD) treatment for vibration control of cylindrical shells under a broadband force excitation. The equations governing the vibration responses are derived using the energy approach and assumed-mode method. These equations provided relationship between the integrated displacement response over the whole structural volume, i.e. the structural volume displacement (SVD), of a cylindrical shell to structural parameters of base structure and multiple PCLD patches, Genetic algorithms (GAs) based penalty function method is employed to find the optimal layout of rectangular PCLD patches with minimize the maximum displacement response of PCLD-treated cylindrical shells. Optimization solutions of PCLD patches’ locations and shape are obtained under the constraint of total amount of PCLD in terms of percentage added weight to the base structure. Examination of the optimal layouts reveals that the patches tend to increase their coverage in the axial direction and distribute over the whole surface of the cylindrical shell for optimal control of the structural volume displacement. / Singapore-MIT Alliance (SMA)
2

Investigation of the Stability of Metallic/Composited-Cased Solid Propellant Rocket Motors under External Pressure

Li, Hung-Peng 31 December 1998 (has links)
Solid rocket motors consist of a thin metallic or composite shell filled with a soft rubbery propellant. Such motors are vulnerable and prone to buckling due to sudden external pressures produced by nearby detonation. The stability conditions of rocket motors subjected toaxisymmetric, external pressure loading are examined. The outer cases of motors are considered as isotropic (metallic) or anisotropic (composite), thin and high-strength shells, which are the main structures of interest in the stability analyses. The inner, low-strength elastic cores are modeled as linear and nonlinear elastic foundations. A general, refined, Sanders' nonlinear shell theory, which accounts for geometric nonlinearity in the form of von Karman type of nonlinear strain-displacement relations, is used to model thin-walled, laminated,composite cylindrical shells. The first order shear deformable concept is adopted in the analyses to include the transverse shear flexibility of composites. A winkler-type of linear and nonlinear elastic foundation is applied to model the internal foundations. Pasternak-foundation constants are also chosen tomodify the proposed elastic foundation model for the purpose of shear interactions. A set of displacement-based finite element codes have been formulated to determine critical buckling loads and mode shapes. The effect of initial imperfections on the structural responses are also incorporated in the formulations. A variety of numerical examples are investigated to demonstrate the validity and efficiency of the purposed theory under various boundary condiitions and loading cases. First, linear eigenvalue analysis is used to examine approximate buckling loads and buckling modes as well as symmetric conditions. An iterative solution procedure, either Newton-Raphson or Riks-Wempner method is employed to trace the nonlinear equilibrium paths for the cases of stress, buckling and post-buckling analyses. Both ring and shell-type models are applied for the structural analyses with different internal elastic foundations and initial imperfections. / Ph. D.
3

Predicting the creep lives of thin-walled cylindrical polymeric pipe linings to external pressure.

Boot, John C., Javadi, Akbar A., Toropova, Irina L. January 2004 (has links)
No / This paper considers both the linear elastic and creep buckling of polymeric pipe linings used for the rehabilitation of gravity pipes, for which external groundwater pressure has been identified as the prime source of loading. Theoretically perfect and imperfect conditions are considered, with the imperfections taken to be in the form of a concentric or eccentric annulus between the rigid host pipe (cylindrical constraint) and polymeric lining. Under these conditions two recently obtained mathematical procedures for the prediction of linearly and non-linearly elastic buckling are compared with the results of complementary laboratory testing. Linear elastic conditions are shown to be well approximated by undertaking short-term (¿30 min) testing under increasing pressure to failure. Controlled imperfections are introduced into the laboratory tests and excellent correlation with the theoretical predictions is obtained. In particular, the dominant geometrical imperfections are shown to be major influences on the obtained buckling pressure. The mathematical models are then adapted to simulate the creep buckling process under long-term constant pressure. The results obtained are again compared with those provided by complementary physical testing, and appropriate conclusions are made.
4

The structural performance of polymeric linings for nominally cylindrical gravity pipes

Boot, John C., Javadi, Akbar A., Toropova, Irina L. January 2004 (has links)
No / This paper considers both the linear elastic and creep buckling of polymeric pipe linings used for the rehabilitation of gravity pipes, for which external groundwater pressure has been identified as the prime source of loading. Theoretically perfect and imperfect conditions are considered, with the imperfections taken to be in the form of a concentric or eccentric annulus between the rigid host pipe (cylindrical constraint) and polymeric lining. Under these conditions two recently obtained mathematical procedures for the prediction of linearly and non-linearly elastic buckling are compared with the results of complementary laboratory testing. Linear elastic conditions are shown to be well approximated by undertaking short-term (¿30 min) testing under increasing pressure to failure. Controlled imperfections are introduced into the laboratory tests and excellent correlation with the theoretical predictions is obtained. In particular, the dominant geometrical imperfections are shown to be major influences on the obtained buckling pressure. The mathematical models are then adapted to simulate the creep buckling process under long-term constant pressure. The results obtained are again compared with those provided by complementary physical testing, and appropriate conclusions are made.
5

Buckling of circular steel cylindrical shells under different loading conditions

Chen, Lei January 2011 (has links)
Cylindrical shells are widely used in civil engineering. Examples include cooling towers, pipelines, nuclear containment vessels, steel silos and tanks for storage of bulk solids and liquids, and pressure vessels. The loading condition for these shells is quite varied depending on the function of the shell. Axial compression, global bending, external or internal pressure and wind loading are some of the most common loading forms for realistic structures. The failure of these cylindrical shell structures is often controlled by elastic or elastic-plastic buckling failure. Yield failure may occur in thick cylinders in some situations. A cylindrical shell under different loading conditions may display quite different buckling behaviour. The objective of this thesis is to investigate the characteristics of different buckling behaviours of cylindrical shell structures under axial compression, global bending, uniform external pressure and wind pressure. Some challenging practical problems in the design of these shell structures are explored. This thesis is expected to have some far-reaching impacts in defining how to design cylindrical shell structures to give them adequate strength to resist extreme events. Many aspects will be based on the latest Eurocode (EN 1993-1-6, 2007) and Recommendations (ECCS EDR5, 2008). The results show both some strength and some weaknesses in the Eurocode in design of shell structures. New methods are proposed for some practical problems. Some new conclusions and suggestions are derived and are expected to provide some useful knowledge for the improvement of the Eurocode in cylindrical shell design in general.
6

Vibrations of elastic bodies of revolution containing imperfections: a theory of imperfection

Tobias, S. A. January 1950 (has links)
No description available.
7

[en] MODAL COUPLING AND MODAL INTERACTION ON THE DYNAMIC INSTABILITY OF CYLINDRICAL / [pt] ACOPLAMENTO E INTERAÇÃO MODAL NA INSTABILIDADE DINÂMICA DE CASCAS CILÍNDRICAS

ZENON JOSE GUZMAN NUNEZ DEL PRADO 31 October 2001 (has links)
[pt] Com base nas equações de Donnell para cascas abatidas, estudam-se as vibrações não-lineares e a instabilidade dinâmica de cascas cilíndricas carregadas axialmente, considerando o efeito simultâneo de cargas estáticas e harmônicas. Para isto, o problema é primeiro reduzido a um sistema finito de graus de liberdade usando o método de Galerkin. O sistema de equações diferenciais de movimento não-lineares é resolvido através do método de Runge-Kutta. Na análise do fenômeno de acoplamento modal foi usado um modelo com dois graus de liberdade, que reflete de maneira consistente o comportamento pós-crítico inicial da casca. Os resultados obtidos com esse modelo simplificado foram comparados com diversas modelagens encontradas na literatura, permitindo assim aferir o modelo utilizado. Para o estudo da interação modal, escolheram-se três modelos distintos com freqüências e cargas críticas próximas ou semelhantes. Para estudar o comportamento não- linear da casca, diversas estratégias numéricas foram usadas para se obter os mapas de Poincaré, expoentes de Lyapunov, pontos fixos estáveis e instáveis, diagramas de bifurcação e bacias de atração. Particular atenção foi dada a dois fenômenos de instabilidade dinâmica que podem ocorrer sob estas condições de carregamento, a saber: excitação paramétrica dos modos de flexão e escape da bacia de atração pré-flambagem. Os cálculos foram realizados nas regiões principal e secundária de instabilidade paramétrica associadas com a menor freqüência natural da casca. Mostra-se de forma detalhada a determinação dos limites de instabilidade no espaço de controle e a identificação dos mecanismos de escape relacionados com estes limites. Os resultados mostram a importância do acoplamento e da interação modal na solução pós-crítica e no comportamento dinâmico não-linear de cascas cilíndricas. / [en] Based on Donnell shallow shell equations, the nonlinear vibrations and dynamic instability of axially loaded circular cylindrical shells under both static and harmonic forces are analyzed. For this, the problem is first reduced to that of a finite degree-of-freedom system by the Galerkin method. The resulting set of coupled non-linear ordinary differential equations of motion is, in turn, solved by the Runge-Kutta method. For the study of modal coupling, a 2 DOF model was used that describes consistently the initial post-buckling behavior of the shell. This model was compared favorably with others found in literature. For the analysis of modal interaction three different models were used considering shells with close or equal frequencies and critical loads. To study the non-linear behavior of the shell several numerical strategies were used to obtain Poincaré maps, Lyapunov exponents, stable and unstable fixed points, bifurcation diagrams and basins of attraction. Particular attention is paid to two dynamic instability phenomena that may arise under these loading conditions:parametric excitation of flexural modes and escape from the pre-buckling potential well.Calculations are carried out for the principal and secondary instability regions associated with the lowest natural frequency of the shell. Special attention is given to the determination of the instability boundaries in control space and the identification of the bifurcational events connected with these boundaries. The results also clarify the importance of modal coupling and modal interaction to the post-buckling solution and non-linear dynamic behavior of cylindrical shells.
8

Dynamic Response of Composite Cylindrical Shells Under External Impulsive Loads

Pothula, Sunil George 05 October 2009 (has links)
No description available.
9

[en] STABILITY ANALYSIS OF LAMINATED COMPOSITE CYLINDRICAL SHELLS AND PANELSSTABILITY ANALYSIS OF LAMINATED COMPOSITE CYLINDRICAL SHELLS AND PANELS / [es] INESTABILIDAD DE CORTEZAS Y PANELES CILÍNDRICOS LAMINADOS DE MATERIALES COMPUESTOS / [pt] INSTABILIDADE DE CASCAS E PAINÉIS CILÍNDRICOS LAMINADOS DE MATERIAIS COMPÓSITOS

ROMAN AUGUSTO ARCINIEGA ALEMAN 14 September 2001 (has links)
[pt] Este trabalho apresenta um estudo do comportamento não- linear e instabilidade de cascas e painéis cilíndricos laminados de materiais compósitos. Com esta finalidade é desenvolvida uma formulação de alta ordem de deformação cisalhante que leva en conta estes efeitos nas relações deformação-deslocamento. O comportamento da casca é descrito por uma consistente teoria não-linear para cascas laminadas que considera pequenas deformações e rotações moderadas e incorpora automaticamente o efeito das deformações cisalhantes. O modelo de bifurcação clássico é utilizado para estudar a estabilidade da casca compósita. O comportamento pós-crítico é examinado a partir de uma solução modal obtida com técnicas de perturbação. Em ambos os casos aplica-se o método de Rayleigh-Ritz para discretizar o sistema de equações diferenciais de equilíbrio em um sistema de equações algébricas. O método de Newton-Raphson é empregado na resolução das equações não- lineares de equilíbrio do caminho pós-crítico e na obtenção do caminho fundamental da estrutura imperfeita. A implementação numérica (em álgebra simbólica) é feita utilizando a linguagem de programação Maple V release 3. É então desenvolvido um estudo paramétrico com o objetivo de determinar a influência dos parâmetros geométricos e das características próprias do laminado (número de lâminas e orientação das fibras) na resposta crítica e pós-crítica da casca compósita para dois tipos de carregamento, a saber: pressão lateral e compressão axial. É analisado, também, o grau de sensibilidade às imperfeições geométricas destas estruturas. São apresentadas comparações dos resultados teóricos aqui obtidos com outros existentes na literatura com o objetivo de demonstrar a confiabilidade da formulação e metodologia numérica aqui desenvolvidas. / [en] The purpose of the present work is to study the non-linear behaviour and instability of laminated composite cylindrical shells and panels under axial and pressure loading. The analysis is performed within a refined non- linear theory for composite laminated shells incorporating the effects of transverse shear and the geometric imperfections. The classical bifurcation theory is used to analyze the critical behavior of the shell. To examine the post-critical behavior of the shell, a modal solution based on the basic ideas of Koiter`s theory is deduced and the Rayleigh-Ritz method together with the Newton-Raphson strategy are used to solve the non-linear equilibrium problem and plot either the post-critical path or the non- linear equilibrium path of the imperfect shell. The analytical and numerical procedures were performed by the use of the symbolic algebra package Maple V release 3. The influence played by the geometrical parametrs of the shell and physical parameters of the composite laminate, such as stacking sequences and fiber orientation in each lamina, on the critical and post-critical behavior of the shell is examined and a series of conclusions are outlined. The imperfection sensitivity of these shells is also analyzed. Comparisons of the present results with those obtained by other theories and experiments are found to be satisfactory and show the validity of the present methodology. / [es] Este trabajo presenta un estudio de la inestabilidad y comportamiento no lineal y la inestabilidad de cortezas y paneles cilíndricos laminados de materiales compuestos. Con esta finalidad se desarrolla una formulación de alta orden de deformación cisallante que considera estos hechos en las relaciones deformación desplazamiento. EL comportamiento de la corteza se describe a través de una consistente teoría no lineal para cascas laminadas. Esta teoría considera pequeñas deformaciones y rotaciones moderadas e incorpora automáticamente las deformaciones cisallantes. El modelo de bifurcación clásico se utiliza para estudiar la estabilidad de la corteza. El comportamiento poscrítico se examina a partir de una solución modal obtenida con técnicas de perturbación. En ambos casos se aplica el método de Rayleigh Ritz para discretizar el sistema de ecuaciones diferenciales de equilibrio en un sistema de ecuaciones algébraicas. El método de Newton Raphson es utilizado en la resolución de las ecuaciones no lineares de equilibrio del camino postcrítico y en la obtención del camino fundamental de la extructura imperfecta. La implementación numérica (en álgebra simbólica) se realiza utilizando el lenguaje de programación Maple V release 3. Con el objetivo de determinar la influencia de los parámetros geométricos y de las características proprias del laminado en la respuesta crítica y postcrítica de la casca compósita, se realiza un estudio paramétrico para para dos tipos de carga: presión lateral y compresión axial. Se analiza también, el grado de sensibilidad a las imperfeiciones geométricas de estas extructuras. Finalmente, y con el objetivo de demostrar la confiabilidad de la formulación y la metodología numérica aqui desarrolladas, se comparan los resultados teóricos obtenidos con los reportados en la literatura.
10

[en] INFLUENCE OF INITIAL GEOMETRIC IMPERFECTIONS ON THE INTERNAL RESONANCES AND NON-LINEAR VIBRATIONS OF THIN-WALLED CYLINDRICAL SHELLS / [pt] INFLUÊNCIA DE IMPERFEIÇÕES GEOMÉTRICAS INICIAIS NAS RESSONÂNCIAS INTERNAS E VIBRAÇÕES NÃO LINEARES DE CASCAS CILÍNDRICAS ESBELTAS

LARA RODRIGUES 30 November 2018 (has links)
[pt] A análise das ressonâncias internas em sistemas estruturais contínuos é uma das principais áreas de pesquisa no campo da dinâmica não linear. A ressonância interna entre dois modos de vibração ocorre quando a proporção de suas frequências naturais é um número inteiro. De particular importância, devido à sua influência na resposta estrutural, é a ressonância interna 1:1, geralmente associada às simetrias do sistema, a ressonância interna 1:2, devida às não linearidades quadráticas e a ressonância 1:3 decorrente de não linearidades cúbicas. A ressonância interna permite a transferência de energia entre os modos de vibração relacionados, levando geralmente a novos fenômenos com profunda influência sobre a estabilidade da resposta dinâmica. As cascas de revolução geralmente exibem ressonâncias internas devido à inerente simetria circunferencial e um denso espectro de frequência em sua faixa de frequências mais baixas. Isso pode levar não apenas a ressonâncias internas do tipo m:n, mas a múltiplas ressonâncias internas. Nesta tese é realizada a análise de múltiplas ressonâncias internas em cascas cilíndricas delgadas, em particular as ressonâncias internas de 1:1:1:1 e 1:1:2:2 são investigadas em detalhes, um tópico pouco explorado na literatura técnica. A investigação de ressonâncias internas em sistemas contínuos geralmente é realizada usando modelos discretos de baixa dimensão. Embora alguns trabalhos anteriores tenham investigado ressonâncias internas do tipo m:n em cascas cilíndricas, muitos resultados não são consistentes, uma vez que os modelos discretos derivados não consideram os acoplamentos modais devido a não linearidades quadráticas e cúbicas. Aqui, usando um procedimento de perturbação, expansões modais consistentes são derivadas para um número arbitrário de modos de interação, levando a modelos de baixa dimensão confiáveis. A precisão desses modelos é corroborada usando o método Karhunen-Loève. Finalmente, é bem sabido que pequenas imperfeições geométricas da ordem da espessura da casca têm uma forte influência na sua resposta não linear. No entanto, sua influência nas ressonâncias internas, instabilidade dinâmica e transferência de energia é desconhecida. Assim, a influência de diferentes tipos de imperfeição modal é devidamente considerada na presente análise. Utilizando os modelos discretos aqui derivados, é apresentada uma análise detalhada das bifurcações, utilizando técnicas de continuação e o critério de estabilidade de Floquet, esclarecendo a importância das ressonâncias internas nas vibrações não lineares e instabilidades de cascas cilíndricas. Os resultados também confirmam que a forma e a magnitude das imperfeições geométricas iniciais têm uma influência profunda nos resultados, permitindo ou impedindo a transferência de energia entre os modos ressonantes considerados. / [en] The analysis of internal resonances in continuous structural systems is one of the main research areas in the field of nonlinear dynamics. Internal resonance between two vibration modes occur when the ratio of their natural frequencies in an integer number. Of particular importance, due to its influence on the structural response, is the 1:1 internal resonance, usually associated with system symmetries, the 1:2 internal resonance, due to quadratic nonlinearities, and the 1:3 resonance arising from cubic nonlinearities. The internal resonance enables the energy transfer between the related vibration modes, leading usually to new phenomena with profound influence on the stability of the dynamic response. Shells of revolution usually exhibit internal resonances due to the inherent circumferential symmetry and a dense frequency spectrum in their lower frequency range. This may lead not only to m:n internal resonances, but also multiple internal resonances. In this thesis, the analysis of multiple internal resonances in slender cylindrical shells is conducted, in particular 1:1:1:1 and 1:1:2:2 internal resonances are investigated in detail, a topic rarely found in the technical literature. The investigation of internal resonances in continuous systems is usually conducted using low dimensional discrete models. Although some previous works have investigated m:n internal resonances in cylindrical shells, many results are not consistent since the derived discrete models do not consider the modal couplings due to quadratic and cubic nonlinearities. Here, using a perturbation procedure, consistent modal expansions are derived for an arbitrary number of interacting modes, leading to reliable low dimensional models. The accuracy of these models is corroborated using the Karhunen-Loève method. Finally, it is well known that small geometric imperfections of the order of the shell thickness has a strong influence on the shell nonlinear response. However, their influence on internal resonances, dynamic instability and energy transfer is largely unknown. Thus, the influence of different types of modal imperfection is properly considered in the present analysis. Using the derived discrete models, a detail bifurcation analysis, using continuation techniques and Floquet stability criterion, is presented, clarifying the importance of internal resonances on the nonlinear vibrations and instabilities of cylindrical shells. The results also confirm that the form and magnitude of initial geometric imperfections has a profound influence on the results enabling or preventing the energy transfer among the considered resonant modes.

Page generated in 0.0284 seconds