• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 13
  • 6
  • 1
  • Tagged with
  • 23
  • 23
  • 13
  • 8
  • 8
  • 8
  • 7
  • 7
  • 6
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Aplicação do polinômio de Hermite-Caos para a determinação da carga de instabilidade paramétrica de cascas cilíndricas com incerteza nos parâmetros físicos e geométricos / Application of Chaos-Hermite polynomial for determining the load of parametric instability of cylindrical shells witn uncertainty in physical and geometrical parameters

Brazão, A. F. 04 April 2014 (has links)
Submitted by Luanna Matias (lua_matias@yahoo.com.br) on 2015-02-04T20:56:59Z No. of bitstreams: 2 Dissertação - Augusta Finotti Brazão - 2014.pdf: 4325407 bytes, checksum: ed015d93a79ebdcbed577af5e0f9a797 (MD5) license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) / Approved for entry into archive by Luciana Ferreira (lucgeral@gmail.com) on 2015-02-05T09:48:34Z (GMT) No. of bitstreams: 2 Dissertação - Augusta Finotti Brazão - 2014.pdf: 4325407 bytes, checksum: ed015d93a79ebdcbed577af5e0f9a797 (MD5) license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) / Made available in DSpace on 2015-02-05T09:48:34Z (GMT). No. of bitstreams: 2 Dissertação - Augusta Finotti Brazão - 2014.pdf: 4325407 bytes, checksum: ed015d93a79ebdcbed577af5e0f9a797 (MD5) license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) Previous issue date: 2014-04-04 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES / The present study aims to investigate the influence of uncertainties in physical and geometric parameters to obtain the load parametric instability of cylindrical shell, using the Galerkin method with the stochastic polynomial Hermite-Caos. The nonlinear equations of motion of the cylindrical shell are deduced from their functional power considering the strain field proposed by Donnell´s nonlinear shallow shell theory. The uncertainties are considered as random parameters with probability density function known in the partial differential equation of motion of the cylindrical shell, which it becomes a stochastic partial differential equation due to the presence of randomness. First, the discretization of the stochastic problem is performed using the stochastic Galerkin method together with polynomial Hermite-Chaos, to transform the stochastic partial differential equation into a set of equivalent deterministic partial differential equations, which take into account the randomness of the system. Then, the discretization of the lateral field displacement is made by a perturbation procedure, indicating the nonlinear vibration modes which couple to the linear vibration mode. The set of partial differential equations is transformed into a deterministic system of equations deterministic ordinary second order in time. Uncertainty is considered in one of its parameters: the Young modulus, thickness and amplitude of initial geometric imperfection. Then we analyze the influence of randomness in two parameters simultaneously: the thickness and the Young modulus. Once obtained the system of ordinary differential equations deterministic containing the randomness of the parameters, the integration over discrete time system is made from the Runge- Kutta fourth order to obtain results as the time response, bifurcation diagrams and boundaries of instability which are compared with deterministic analysis, indicating that polynomial Hermite-Chaos is a good numerical tool for predicting the load parametric instability without the need to perform a process of sampling. / O presente trabalho tem como objetivo investigar a influência de incertezas nos parâmetros físicos e geométricos para a determinação da carga de instabilidade paramétrica da casca cilíndrica, utilizando o método de Galerkin Estocástico juntamente com o polinômio de Hermite-Caos. As equações não-lineares de movimento da casca cilíndrica são deduzidas a partir de seus funcionais de energia considerando o campo de deformações proposto pela teoria não linear de Donnell para cascas esbeltas. As incertezas são consideradas como parâmetros aleatórios com função de densidade de probabilidade conhecida na equação diferencial parcial de movimento da casca cilíndrica, que passa a ser uma equação diferencial parcial estocástica devido à presença da aleatoriedade. Primeiramente, faz-se a discretização do problema estocástico utilizando o método de Galerkin Estocástico juntamente com o polinômio de Hermite-Caos, para transformar a equação diferencial parcial estocástica em um conjunto de equações diferenciais parciais determinísticas equivalentes, que levem em consideração a aleatoriedade do sistema. Em seguida, apresenta-se a discretização do campo de deslocamentos laterais através do Método da Perturbação, indicando os modos não-lineares de vibração que se acoplam ao modo linear de vibração, para que o conjunto de equações diferenciais parciais determinísticas seja transformado em um sistema de equações ordinárias determinísticas de segunda ordem no tempo. A incerteza é considerada inicialmente em apenas um de seus parâmetros: no módulo de elasticidade, na espessura e na amplitude da imperfeição geométrica inicial. Em seguida, analisa-se a influência de aleatoriedades em dois parâmetros simultaneamente, sendo eles: a espessura e o módulo de elasticidade. Uma vez obtido o sistema de equações diferenciais ordinárias determinísticas que contêm as aleatoriedades dos parâmetros, a integração ao longo do tempo do sistema discretizado é feita a partir do método de Runge-Kutta de quarta ordem, obtendo-se resultados como resposta no tempo, diagramas de bifurcação e fronteiras de instabilidade, que são comparados com análises determinísticas, indicando que o polinômio de Hermite-Caos é uma boa ferramenta numérica para prever a carga de instabilidade paramétrica sem a necessidade de se realizar um processo de amostragens.
22

[pt] ESTABILIDADE E VIBRAÇÕES DE CASCAS CILÍNDRICAS SANDUÍCHE COM NÚCLEO DE ESPUMA METÁLICA / [en] STABILITY AND VIBRATIONS OF SANDWICH CYLINDRICAL SHELLS WITH METAL FOAM CORE

EWERTON ALVES BEZERRA 04 December 2019 (has links)
[pt] As cascas cilíndricas possuem aplicações em diversas áreas da engenharia. Nas últimas décadas tem se observado o surgimento de novos materiais e suas técnicas de produção, levando a novas aplicações em estruturas de cascas. Dentre estas, as cascas sanduíche e cascas com gradação funcional têm levado, em muitas aplicações, a um melhor desempenho estrutural associado a uma redução de peso. Este trabalho tem como objetivo estudar as frequências naturais e as cargas críticas de cascas sanduíche com faces de metal e núcleo de espuma metálica e cascas com gradação funcional, onde as características da espuma metálica variam ao longo da espessura levando a uma estrutura similar à da casca sanduíche. Esses resultados são comparados com aqueles de cascas isotrópicas homogêneas. Para tanto, é utilizada a teoria linear de Donnell, que é uma das mais empregadas para análise de cascas. Primeiramente, derivam-se as equações de movimento assim como as equações de equilíbrio crítico. Utilizando as soluções analíticas para uma casca simplesmente apoiada, obtêm-se as matrizes de massa, de rigidez e de rigidez geométrica, possibilitando o cálculo das frequências naturais e cargas críticas da casca sob compressão axial e pressão lateral. Através de uma análise paramétrica, os resultados mostram a influência da geometria da casca, da variação do material ao longo da espessura, do cisalhamento no núcleo e dos termos de inércia nas cargas críticas e frequências naturais. Os resultados também ressaltam a influência do núcleo de espuma metálica no aumento da capacidade de carga e redução de peso das cascas sanduíche e com gradação funcional. / [en] Cylindrical shells are used in several areas of engineering fields. In the last decades has been observed the emergence of new materials and their production techniques, leading to new applications in shell structures. Among these, the sandwich shells and shell with functionally graded materials have led, in many applications, to a better structural performance associated to a reduction of weight. This work aims to study the natural frequencies and the critical loads of sandwich shells with metal faces and metal foam core and functionally graded shells, where the characteristics of the metallic foam vary throughout the thickness leading to a structure similar to that of the sandwich shell. These results are compared with those of homogeneous isotropic shells. For this, the linear theory of Donnell, which is one of the most used for shell analysis, is here used. First, the equations of motion as well as the critical equilibrium equations are derived. Using the analytical solutions for a simply supported shell, the mass, stiffness and geometric stiffness matrices are obtained, allowing the calculation of the natural frequencies and critical loads of the shell under axial compression and lateral pressure. Through a parametric analysis, the results show the influence of the shell geometry, material variation along the shell thickness, shear deformation of the core and the inertia terms on the critical loads and natural frequencies. The results also highlight the influence of the metallic foam core in increasing the load bearing capacity and reducing the weight of the sandwich and functionally graded shells.
23

Development of a substructuring approach to model the vibroacoustic behavior of submerged stiffened cylindrical shells coupled to non-axisymmetric internal frames / Développement d'une approche de sous-structuration pour la prise en compte de structures internes non-axisymétriques dans la modélisation vibro-acoustique de coques raidies immergées

Meyer, Valentin 28 October 2016 (has links)
De nombreux travaux dans la littérature se sont concentrés sur la modélisation vibro-acoustique de coques cylindriques raidies immergées, du fait des nombreuses applications industrielles, en particulier dans le domaine aéronautique ou naval. Cependant, peu d'entre elles prennent en compte des structures internes non-axisymétriques telles que des supports moteurs, des planchers ou des carlingages, qui peuvent avoir une influence importante sur le comportement vibro-acoustique du système. C'est pourquoi une méthode de sous-structuration baptisée CTF est présentée dans cette thèse. Elle est développée dans le cas général de deux structures minces couplées le long d'une ligne. Un ensemble de fonctions orthonormées, baptisées fonctions de condensation, est défini afin d'approximer les forces et déplacements à la jonction entre les sous-systèmes. Des fonctions de transfert condensées sont définies pour chaque sous-système découplé. L'utilisation du principe de superposition, de l'équilibre des forces et de la continuité des déplacements permet de déduire le comportement des sous-systèmes couplés. La méthode est d'abord développée et validée dans le cas de plaques, puis ensuite appliquée au cas d'une coque cylindrique raidie immergée couplée à des structures internes non-axisymétriques. Le système est dans ce cas décomposé en 3 familles de sous-systèmes : la coque cylindrique immergée décrite par une méthode semi-analytique basée sur la résolution des équations de Flügge dans le domaine des nombres d’onde, les structures internes axisymétriques (raidisseurs, cloisons) décrites par éléments finis axisymétriques et les structures non-axisymétriques décrites pas des modèles éléments finis. La méthode CTF est appliquée à différents cas tests afin de montrer l'influence des structures internes non-axisymétriques sur le comportement vibro-acoustique d'une coque cylindrique pour différents types d'excitations pertinents dans le domaine naval : une force ponctuelle, une onde plane acoustique et un champ de pression aléatoire (tel qu'un champ acoustique diffus ou une couche limite turbulente). / Many works can be found in the literature concerning the vibroacoustic modelling of submerged stiffened cylindrical shells, because of high interest in the industrial domain, in particular for aeronautical or naval applications. However, only a few of them take into account non-axisymmetric internal frames, as for instance engine foundations or floor partitions, that can play a role on the vibroacoustic behavior of the system. That is why a substructuring approach called the Condensed Transfer Function (CTF) approach is proposed in the first part of this thesis. The aim is to take advantage of both analytical models and element-based models, in order to be able to deal with the geometrical complexity, and to calculate at higher frequencies than with element-based methods only. The substructuring method is developed in the general case of thin mechanical structures coupled along curves. A set of orthonormal functions called condensation functions, which depend on the curvilinear abscissa along the coupling line, is considered. This set is then used as a basis for approximating and decomposing the displacements and the applied forces at the line junctions. Thanks to the definition and calculation of condensed transfer functions for each uncoupled subsystem and by using the superposition principle for passive linear systems, the behavior of the coupled subsystems can be obtained. The method is first developed and validated for plates and convergence criteria are defined in relation with the size of the basis of condensation functions. The CTF method is then applied to the case of a submerged stiffened cylindrical shell with non-axisymmetric internal frames. The system is partitioned in 3 types of subsystems: the submerged shell, the axisymmetric frames (stiffeners, bulkheads) and the non-axisymmetric frames. The submerged shell is described by a semi-analytical method based on the Flügge equations in the spectral domain. The axisymmetric frames are described by axisymmetric Finite Element models and the non-axisymmetric frames by Finite Element models. The CTF method is applied to different test cases in order to highlight the influence of non-axisymmetric internal frames on the vibroacoustic behavior of a submerged stiffened cylindrical shell, for different excitations particularly relevant in the naval domain: a point force, an acoustic plane wave, and a random pressure field (such as a diffuse sound field or a turbulent boundary layer for instance).

Page generated in 0.0344 seconds