Spelling suggestions: "subject:"apropagation d’one"" "subject:"depropagation d’one""
1 |
Wave generation and propagation at tribological interfaces / Génération et propagation d’onde sur des interfaces tribologiquesDi Bartolomeo, Mariano 19 December 2011 (has links)
L’objectif de cette thèse est d’approfondir la connaissance sur la génération et la propagation des ondes à travers l’interface de contact afin de contrôler leurs effets sur le frottement, contrôler les instabilités et réduire les phénomènes d'usure. Le travail est organisé en deux parties principales. La première partie est axée sur une analyse non-linéaire par éléments finis en grandes transformations; la rupture dynamique à l’interface de contact avec frottement, qui sépare deux corps (isotropes et élastiques) en condition de pré-charge statique, est simulée. On définit comme étant une rupture une zone, initialement en adhérence, qui change son état en devenant glissante. Les propriétés des ruptures sont analysées pour une surface plane entre deux matériaux différents en fonction de l’énergie de nucléation; l’effet de la rugosité de surface est ensuite analysée. En outre, la rupture "cumulatives" dans les aspérités et les conditions pour le couplage ou le non-couplage entre les ondes qui se propagent dans les deux corps sont étudiées. Dans la deuxième partie, l'amorçage du glissement entre deux corps en contact constitués de matériaux différents et séparés par une interface avec frottement, est simulée. L’évolution, en fonction du temps, des forces globales (normale et tangentielle) a été mise en relation avec les phénomènes locaux qui se déroulent à l’interface. L'analyse montre comment les micro-slips à l'interface, en agissant comme ruptures localisées, déclenchent les macro-slips entre les deux corps. L'interaction entre les dynamiques locale du contact et globale du système a été aussi étudiée. Enfin, une analyse paramétrique est menée en fonction de plusieurs paramètres (loi de contact, coefficient de frottement, amortissement matériau, charge normale, etc.). Les résultats mettent en avant le rôle-clé des micro-slips et des précurseurs (propagations d'ondes détectables qui ont lieu pour des valeurs de la force tangentielle globale inférieures à la valeur prévue par la loi de frottement) dans l'amorçage du macro-slip entre les deux corps. En fonction de leur distribution et de leur intensité, l'évolution des forces de contact change en passant d'un comportement de type stick-slip à un glissement continu. La dynamique locale au contact (propagation des ondes et ruptures) a été reliée au comportement global du système (stick-slip, glissement continu, vibrations induites); l'effet des paramètres du contact et du système sur le transfert d'énergie vibrationnelle entre le contact glissant et le système a également été examinée: en fonction de leurs valeurs, on peut avoir différentes modalités d'excitation du système (par une distribution de micro-slips ou par des macro-slips) et différentes processus de propagation et dissipation d'énergie. Les résultats numériques obtenus dans les deux parties de la thèse sont cohérents avec les résultats expérimentaux de la littérature. / This thesis is addressed to the understanding of the mechanisms at the origin of the contact wave fields at frictional interfaces and its relationship with the local characteristics of the surfaces in contact, as well as with the global dynamics and macroscopic frictional behaviour of the system. The aim of this work is to provide insights on the generation and propagation of the waves through the contact both to avoid instabilities and to control their effect on friction. The work is organized in two main parts. The first part presents the development of a non-linear finite element analysis in large transformations of the dynamic rupture at the interface with contact friction separating two bodies (isotropic and elastic) without relative motion. A rupture is considered when an initially sticking zone shifts in sliding state. The properties of the obtained ruptures are analyzed for a flat interface between dissimilar materials in function of the nucleation energy; then the effect of the interface roughness is analyzed. The differentiated rupture inside the asperities and the conditions for coupling and uncoupling between the waves radiating in the two bodies have been also investigated. In the second part, the analysis deals with the sliding onset between two bodies in contact. The sliding between two bodies made of different isotropic elastic materials and separated by a frictional interface is simulated. The evolution along the time of the global normal and tangential forces is analyzed, relating it to the local phenomena occurring at the interface. This part tries to investigate how micro-slips at the interface, acting as distributed ruptures, trigger the macro-slips between the two bodies. The interaction between local and global dynamics is also studied. Finally a numerical parameter space study is carried out, as a function of several system parameters (contact law, friction coefficient, material damping, normal load, translational velocity and regularization time). The results show the key role of the micro-slips and precursors (detectable wave propagations that occur at tangential global force well below the critical value expected by the friction law) in triggering the macro-slip between the two bodies. Depending on their distribution and magnitude the evolution of the contact forces passes from stick-slip-like behaviour to continuous sliding. The local dynamics at the contact (wave and rupture propagation) is linked to the global behaviour of the system (stick-slip, continuous sliding, induced vibrations); the effect of the contact and system parameters on the transfer of vibrational energy between the sliding contact and the system is investigated. The numerical results obtained by the two parts of the work show a good agreement with experimental results in literature.
|
2 |
Correction et simplification de modèles géologiques par frontières : impact sur le maillage et la simulation numérique en sismologie et hydrodynamique / Repair and simplification of geological boundary representation models : impact on mesh and numerical simulation in seismology and hydrodynamicsAnquez, Pierre 12 June 2019 (has links)
Les modèles géologiques numériques 2D et 3D permettent de comprendre l'organisation spatiale des roches du sous-sol. Ils sont également conçus pour réaliser des simulations numériques afin d’étudier ou de prédire le comportement physique du sous-sol. Pour résoudre les équations qui gouvernent les phénomènes physiques, les structures internes des modèles géologiques peuvent être discrétisées spatialement à l’aide de maillages. Cependant, la qualité des maillages peut être considérablement altérée à cause de l’inadéquation entre, d’une part, la géométrie et la connectivité des objets géologiques à représenter et, d’autre part, les contraintes requises sur le nombre, la forme et la taille des éléments des maillages. Dans ce cas, il est souhaitable de modifier un modèle géologique afin de pouvoir générer des maillages de bonne qualité permettant la réalisation de simulations physiques fidèles en un temps raisonnable. Dans cette thèse, j’ai développé des stratégies de réparation et de simplification de modèles géologiques 2D dans le but de faciliter la génération de maillages et la simulation de processus physiques sur ces modèles. Je propose des outils permettant de détecter les éléments des modèles qui ne respectent pas le niveau de détail et les prérequis de validité spécifiés. Je présente une méthode pour réparer et simplifier des coupes géologiques de manière locale, limitant ainsi l’extension des modifications. Cette méthode fait appel à des opérations d’édition de la géométrie et de la connectivité des entités constitutives des modèles géologiques. Deux stratégies sont ainsi explorées : modifications géométriques (élargissements locaux de l'épaisseur des couches) et modifications topologiques (suppressions de petites composantes et fusions locales de couches fines). Ces opérations d’édition produisent un modèle sur lequel il est possible de générer un maillage et de réaliser des simulations numériques plus rapidement. Cependant, la simplification des modèles géologiques conduit inévitablement à la modification des résultats des simulations numériques. Afin de comparer les avantages et les inconvénients des simplifications de modèles sur la réalisation de simulations physiques, je présente trois exemples d'application de cette méthode : (1) la simulation de la propagation d'ondes sismiques sur une coupe au sein du bassin houiller lorrain, (2) l’évaluation des effets de site liés à l'amplification des ondes sismiques dans le bassin de la basse vallée du Var, et (3) la simulation d'écoulements fluides dans un milieu poreux fracturé. Je montre ainsi (1) qu'il est possible d’utiliser les paramètres physiques des simulations, la résolution sismique par exemple, pour contraindre la magnitude des simplifications et limiter leur impact sur les simulations numériques, (2) que ma méthode de simplification de modèles permet de réduire drastiquement le temps de calcul de simulations numériques (jusqu’à un facteur 55 sur une coupe 2D dans le cas de l’étude des effets de site) tout en conservant des réponses physiques équivalentes, et (3) que les résultats de simulations numériques peuvent être modifiés en fonction de la stratégie de simplification employée (en particulier, la modification de la connectivité d’un réseau de fractures peut modifier les écoulements fluides et ainsi surestimer ou sous-estimer la quantité des ressources produites). / Numerical geological models help to understand the spatial organization of the subsurface. They are also designed to perform numerical simulations to study or predict the rocks physical behavior. The internal structures of geological models are commonly discretized using meshes to solve the physical governing equations. The quality of the meshes can be, however, considerably degraded due to the mismatch between, on the one hand, the geometry and the connectivity of the geological objects to be discretized and, on the other hand, the constraints imposed on number, shape and size of the mesh elements. As a consequence, it may be desirable to modify a geological model in order to generate good quality meshes that allow realization of reliable physical simulations in a reasonable amount of time. In this thesis, I developed strategies for repairing and simplifying 2D geological models, with the goal of easing mesh generation and simulation of physical processes on these models. I propose tools to detect model elements that do not meet the specified validity and level of detail requirements. I present a method to repair and simplify geological cross-sections locally, thus limiting the extension of modifications. This method uses operations to edit both the geometry and the connectivity of the geological model features. Two strategies are thus explored: geometric modifications (local enlargements of the layer thickness) and topological modifications (deletions of small components and local fusions of thin layers). These editing operations produce a model on which it is possible to generate a mesh and to realize numerical simulations more efficiently. But the simplifications of geological models inevitably lead to the modification of the numerical simulation results. To compare the advantages and disadvantages of model simplifications on the physical simulations, I present three applications of the method: (1) the simulation of seismic wave propagation on a cross-section within the Lorraine coal basin, (2) the site effects evaluation related to the seismic wave amplifications in the basin of the lower Var river valley, and (3) the simulation of fluid flows in a fractured porous medium. I show that (1) it is possible to use the physical simulation parameters, like the seismic resolution, to constrain the magnitude of the simplifications and to limit their impact on the numerical simulations, (2) my method of model simplification is able to drastically reduce the computation time of numerical simulations (up to a factor of 55 in the site effects case study) while preserving an equivalent physical response, and (3) the results of numerical simulations can be changed depending on the simplification strategy employed (in particular, changing the connectivity of a fracture network can lead to a modification of fluid flow paths and overestimation or underestimation of the quantity of produced resources).
|
3 |
Development of a substructuring approach to model the vibroacoustic behavior of submerged stiffened cylindrical shells coupled to non-axisymmetric internal frames / Développement d'une approche de sous-structuration pour la prise en compte de structures internes non-axisymétriques dans la modélisation vibro-acoustique de coques raidies immergéesMeyer, Valentin 28 October 2016 (has links)
De nombreux travaux dans la littérature se sont concentrés sur la modélisation vibro-acoustique de coques cylindriques raidies immergées, du fait des nombreuses applications industrielles, en particulier dans le domaine aéronautique ou naval. Cependant, peu d'entre elles prennent en compte des structures internes non-axisymétriques telles que des supports moteurs, des planchers ou des carlingages, qui peuvent avoir une influence importante sur le comportement vibro-acoustique du système. C'est pourquoi une méthode de sous-structuration baptisée CTF est présentée dans cette thèse. Elle est développée dans le cas général de deux structures minces couplées le long d'une ligne. Un ensemble de fonctions orthonormées, baptisées fonctions de condensation, est défini afin d'approximer les forces et déplacements à la jonction entre les sous-systèmes. Des fonctions de transfert condensées sont définies pour chaque sous-système découplé. L'utilisation du principe de superposition, de l'équilibre des forces et de la continuité des déplacements permet de déduire le comportement des sous-systèmes couplés. La méthode est d'abord développée et validée dans le cas de plaques, puis ensuite appliquée au cas d'une coque cylindrique raidie immergée couplée à des structures internes non-axisymétriques. Le système est dans ce cas décomposé en 3 familles de sous-systèmes : la coque cylindrique immergée décrite par une méthode semi-analytique basée sur la résolution des équations de Flügge dans le domaine des nombres d’onde, les structures internes axisymétriques (raidisseurs, cloisons) décrites par éléments finis axisymétriques et les structures non-axisymétriques décrites pas des modèles éléments finis. La méthode CTF est appliquée à différents cas tests afin de montrer l'influence des structures internes non-axisymétriques sur le comportement vibro-acoustique d'une coque cylindrique pour différents types d'excitations pertinents dans le domaine naval : une force ponctuelle, une onde plane acoustique et un champ de pression aléatoire (tel qu'un champ acoustique diffus ou une couche limite turbulente). / Many works can be found in the literature concerning the vibroacoustic modelling of submerged stiffened cylindrical shells, because of high interest in the industrial domain, in particular for aeronautical or naval applications. However, only a few of them take into account non-axisymmetric internal frames, as for instance engine foundations or floor partitions, that can play a role on the vibroacoustic behavior of the system. That is why a substructuring approach called the Condensed Transfer Function (CTF) approach is proposed in the first part of this thesis. The aim is to take advantage of both analytical models and element-based models, in order to be able to deal with the geometrical complexity, and to calculate at higher frequencies than with element-based methods only. The substructuring method is developed in the general case of thin mechanical structures coupled along curves. A set of orthonormal functions called condensation functions, which depend on the curvilinear abscissa along the coupling line, is considered. This set is then used as a basis for approximating and decomposing the displacements and the applied forces at the line junctions. Thanks to the definition and calculation of condensed transfer functions for each uncoupled subsystem and by using the superposition principle for passive linear systems, the behavior of the coupled subsystems can be obtained. The method is first developed and validated for plates and convergence criteria are defined in relation with the size of the basis of condensation functions. The CTF method is then applied to the case of a submerged stiffened cylindrical shell with non-axisymmetric internal frames. The system is partitioned in 3 types of subsystems: the submerged shell, the axisymmetric frames (stiffeners, bulkheads) and the non-axisymmetric frames. The submerged shell is described by a semi-analytical method based on the Flügge equations in the spectral domain. The axisymmetric frames are described by axisymmetric Finite Element models and the non-axisymmetric frames by Finite Element models. The CTF method is applied to different test cases in order to highlight the influence of non-axisymmetric internal frames on the vibroacoustic behavior of a submerged stiffened cylindrical shell, for different excitations particularly relevant in the naval domain: a point force, an acoustic plane wave, and a random pressure field (such as a diffuse sound field or a turbulent boundary layer for instance).
|
4 |
Contributions à l'imagerie sismique par inversion des formes d’onde pour les équations d'onde harmoniques : Estimation de stabilité, analyse de convergence, expériences numériques avec algorithmes d'optimisation à grande échelle / Contributions to Seismic Full Waveform Inversion for Harmonic Wave Equations : Stability Estimates, Convergence Analysis, Numerical Experiments involving Large Scale Optimization Algorithms.Faucher, Florian 29 November 2017 (has links)
Dans ce projet, nous étudions la reconstruction de milieux terrestres souterrains.L’imagerie sismique est traitée avec un problème de minimisation itérative àgrande échelle, et nous utilisons la méthode de l’inversion des formes d’ondes(Full Waveform Inversion, FWI method). La reconstruction est basée sur desmesures d’ondes sismiques, car ces ondes sont caractérisées par le milieu danslequel elles se propagent. Tout d’abord, nous présentons les méthodesnumériques qui sont nécessaires pour prendre en compte l’hétérogénéité etl’anisotropie de la Terre. Ici, nous travaillons avec les solutions harmoniques deséquations des ondes, donc dans le domaine fréquentiel. Nous détaillons leséquations et l’approche numérique mises en place pour résoudre le problèmed’onde.Le problème inverse est établi afin de reconstruire les propriétés du milieu. Ils’agit d’un problème non-linéaire et mal posé, pour lequel nous disposons de peude données. Cependant, nous pouvons montrer une stabilité de type Lipschitzpour le problème inverse associé avec l’équation de Helmholtz, en considérantdes modèles représentés par des constantes par morceaux. Nous explicitons laborne inférieure et supérieure pour la constante de stabilité, qui nous permetd’obtenir une caractérisation de la stabilité en fonction de la fréquence et del’échelle. Nous revoyons ensuite le problème de minimisation associé à lareconstruction en sismique. La méthode de Newton apparaît comme naturelle,mais peut être difficilement accessible, dû au coup de calcul de la Hessienne.Nous présentons une comparaison des méthodes pour proposer un compromisentre temps de calcul et précision. Nous étudions la convergence de l’algorithme,en fonction de la géométrie du sous-sol, la fréquence et la paramétrisation. Celanous permet en particulier de quantifier la progression en fréquence, en estimantla taille du rayon de convergence de l’espace des solutions admissibles.A partir de l’étude de la stabilité et de la convergence, l’algorithme deminimisation itérative est conduit en faisant progresser la fréquence et l’échellesimultanément. Nous présentons des exemples en deux et trois dimensions, etillustrons l’incorporation d’atténuation et la considération de milieux anisotropes.Finalement, nous étudions le cas de reconstruction avec accès aux données deCauchy, motivé par les dual sensors développés en sismique. Cela nous permetde définir une nouvelle fonction coût, qui permet de prometteuses perspectivesavec un besoin minimal quant aux informations sur l’acquisition. / In this project, we investigate the recovery of subsurface Earth parameters. Weconsider the seismic imaging as a large scale iterative minimization problem, anddeploy the Full Waveform Inversion (FWI) method, for which several aspects mustbe treated. The reconstruction is based on the wave equations because thecharacteristics of the measurements indicate the nature of the medium in whichthe waves propagate. First, the natural heterogeneity and anisotropy of the Earthrequire numerical methods that are adapted and efficient to solve the wavepropagation problem. In this study, we have decided to work with the harmonicformulation, i.e., in the frequency domain. Therefore, we detail the mathematicalequations involved and the numerical discretization used to solve the waveequations in large scale situations.The inverse problem is then established in order to frame the seismic imaging. Itis a nonlinear and ill-posed inverse problem by nature, due to the limitedavailable data, and the complexity of the subsurface characterization. However,we obtain a conditional Lipschitz-type stability in the case of piecewise constantmodel representation. We derive the lower and upper bound for the underlyingstability constant, which allows us to quantify the stability with frequency andscale. It is of great use for the underlying optimization algorithm involved to solvethe seismic problem. We review the foundations of iterative optimizationtechniques and provide the different methods that we have used in this project.The Newton method, due to the numerical cost of inverting the Hessian, may notalways be accessible. We propose some comparisons to identify the benefits ofusing the Hessian, in order to study what would be an appropriate procedureregarding the accuracy and time. We study the convergence of the iterativeminimization method, depending on different aspects such as the geometry ofthe subsurface, the frequency, and the parametrization. In particular, we quantifythe frequency progression, from the point of view of optimization, by showinghow the size of the basin of attraction evolves with frequency. Following the convergence and stability analysis of the problem, the iterativeminimization algorithm is conducted via a multi-level scheme where frequencyand scale progress simultaneously. We perform a collection of experiments,including acoustic and elastic media, in two and three dimensions. Theperspectives of attenuation and anisotropic reconstructions are also introduced.Finally, we study the case of Cauchy data, motivated by the dual sensors devicesthat are developed in the geophysical industry. We derive a novel cost function,which arises from the stability analysis of the problem. It allows elegantperspectives where no prior information on the acquisition set is required.
|
5 |
Couches absorbantes hybrides multi-pas de temps en dynamique des sols / Multi-time step absorbing layers for soil dynamics problemsZafati, Eliass 09 June 2015 (has links)
Ce travail de thèse qui a pour objet la génération et l'étude des couches absorbantes dans les problèmes impliquant la dynamique des sols, est divisé en trois parties essentielles. La première consiste à proposer une méthode de dimensionnement des couches absorbantes par l'amortissement de Rayleigh afin de simuler des problèmes de propagation d'ondes dans les milieux infinis. Cette méthode repose sur une analyse mathématique du problème de propagation d'ondes dans un milieu caractérisé par la matrice de Rayleigh, qui nous permet, d'une part, d'établir des conditions de minimisation des réflexions parasites aux interfaces, et d'autre part, de proposer une simple relation de dimensionnement du domaine absorbant basée sur la notion de décrément logarithmique. On se propose dans la deuxième partie d'appliquer une stratégie de couplage des schémas temporels pour des problèmes de propagation d'ondes dans les milieux infinis 1D et 2D. L'approche proposée est d'intégrer le domaine d'étude par un schéma explicite et le domaine absorbant par un schéma implicite, et d'évaluer le potentiel de cette méthode en faisant varier les rapports de pas de temps entre les sous domaines. Une attention particulière est accordée au cas 1D pour lequel l'effet de la finesse du maillage définie par le nombre d'éléments finis par longueur d'onde est également analysé. Par ailleurs, l'évolution du temps de calcul en fonction du rapport entre les pas de temps est étudiée afin d'estimer les gains réalisés par rapport à un calcul de référence où le problème global est intégré uniquement avec un schéma explicite. La dernière partie est dédiée à l'étude des couches amortissantes de type PML ("Perfectly Matched Layer") dans le cadre des couplages hybrides multi-pas de temps. Cette partie est introduite par une étude de stabilité des schémas temporels dans le cas d'une PML en 1D. La couche absorbante PML est intégrée selon un schéma implicite en adoptant des pas de temps plus importants que le domaine d'intérêt intégré selon un schéma explicite. Bien que cette méthodologie de couplage s'avère très efficace pour la reproduction des milieux infinis, les études paramétriques montrent une sensibilité à la taille du pas de temps plus forte que celle exhibée par les couches amortissantes de Rayleigh. / This thesis which deals with the study of absorbing layers for soil dynamics problems, is divided into three essential parts. The first part aims to propose a design method of absorbing layers by the Rayleigh damping to simulate wave propagation problems in infinite media. This method is based on a mathematical analysis of the wave propagation problem in a media characterized by a Rayleigh damping matrix, which allows us, firstly, to establish conditions for minimizing spurious waves at the interfaces, and another hand, to provide a simple design relationship for the absorbing domain based on the notion of the logarithmic decrement. The second part aims to apply the multi-time step strategy for wave propagation problems in 1D and 2D infinite media. The proposed approach is to integrate the physical domain by an explicit scheme and the absorbing domain by an implicit scheme and to evaluate the potential of this method by varying the time step ratio between subdomains. Special attention is given to the 1D case for which the effect of the mesh fineness, defined by the number of finite elements per wavelength, is also analyzed. Furthermore, the evolution of computing time depending on the time ratio is studied in order to estimate the gains made with respect to a reference computation achieved by a full explicit integration. The last part is dedicated to the study of the Perfectly Matched Layer (PML) as part of hybrid couplings multi-time step. This section is introduced by a stability study of temporal scheme for 1D cases. The absorbing layer PML is integrated by an implicit scheme with a time step larger than that of the domain of interest. Although this coupling methodology is very effective for the reproduction of infinite media, parametric studies show a sensitivity to the time ratio greater than that exhibited by the Rayleigh damping layers.
|
Page generated in 0.0754 seconds