• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • 1
  • Tagged with
  • 4
  • 4
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Differential tolerance of Hawaiian sugarcane varieties to diuron, 3-(3,4-dichlorophenyl)-1, 1-dimethylurea

Osgood, R. V (Robert V.), 1941 January 1969 (has links)
Typescript. / Thesis (Ph. D.)--University of Hawaii, 1969. / Bibliography: leaves 57-58. / xii, 75 l illus
2

Sugarcane cultivar selection for ethanol production using dilute acid pretreatment, enzymatic hydrolysis and fermentation

Benjamin, Yuda L. 04 1900 (has links)
Thesis (PhD)--Stellenbosch University, 2014. / ENGLISH ABSTRACT: The development of ―energycane‖ varieties of sugarcane for ethanol production is underway, targeting the use of both sugar juice (first generation ethanol) and bagasse (second generation ethanol). Nevertheless, identification of the preferred varieties represents the biggest challenge to the development of energycane due to large number of samples produced during breeding. In the present study, dilute acid pretreatment, enzymatic hydrolysis and fermentation processes were used to evaluate the processability of bagasse (fibrous residue generated after juice sugar extraction) from different varieties of sugarcane to select preferred varieties with the properties of improving combined ethanol yield (ethanol from juice and bagasse) per hectare. The impact of variety selection on combined ethanol yield (ethanol from juice and bagasse) per hectare was also assessed. In the first part of this study, 115 varieties of sugarcane originated from classical breeding and precision breeding (genetic engineering) were screened based on agronomic data and experimental data from biochemical processes (dilute acid pretreatment and enzymatic hydrolysis) applied to the bagasse fraction of each variety. The results showed wide variations in the chemical composition of bagasse between the varieties. Structural carbohydrates and lignin content ranged from 66.6 to 77.6% dry matter (DM) and 14.4 to 23.1% DM, respectively. The majority of precision breeding varieties showed higher arabinoxylan, lower lignin and lower ash content than most of classical breeding varieties. Combined sugar yield from the bagasse after pretreatment and enzymatic hydrolysis also varied significantly among the varieties. Up to 27.9 g/100g (dry bagasse) difference in combined sugar yield was observed. Combined sugar yield was inversely correlated with lignin as well as ash content, but it correlated positively with structural carbohydrates content. Total potential ethanol yields per hectare, calculated based on cane yield, soluble and non-soluble sugar content also differed significantly among the varieties (8,602−18,244 L/ha). Potential ethanol from bagasse contributed approximately one third of the total potential ethanol yield. Interestingly, some of the varieties had combined properties of high potential ethanol yield per hectare and improved bagasse convertibility. Thus, six varieties (3 from each breeding technology) were selected as preferred varieties for further investigation. To enhance sugar yield from bagasse, optimisation of pretreatment was conducted on the selected varieties. Industrial bagasse was included for comparison purposes. The pretreatment optimisation was based on maximising combined sugar yield from the combined pretreatment-hydrolysis process. A central composite design (CCD) was applied to investigate the effects of temperature, acid concentration and residence time on the responses and was later used to determine the maximum combined sugar yield. Pretreatment optimisation was conducted at gram scale (22.9 ml reactor) and at bench scale (1000 ml reactor). Significant differences in sugar yields (xylose, glucose, and combined sugar) between the varieties were observed. The combined sugar yields from the best performing varieties and industrial bagasse at optimal pretreatment-hydrolysis conditions differed by up to 34.1% and 33% at gram and bench scale, respectively. A high ratio of carbohydrates to lignin and low ash contents increased the release of sugar from the substrates. At mild pretreatment conditions, the differences in bioconversion efficiency between varieties were greater than at severe conditions. This observation suggests that under less severe conditions the conversion efficiency was largely determined by the properties of the biomass. Furthermore, it was demonstrated that the pretreatment conditions with temperature ranged from 184 to 200 °C and varying residence time to provide a severity factor between 3.51 and 3.96 was observed to be the area in common where 95% of maximum combined sugar yield could be obtained. Simultaneous Saccharification and Fermentation (SSF) was performed on the unwashed pressed-slurry from bagasse pretreatment at conditions for maximum combined sugar yield at bench scale. Batch and fed-batch SSF feeding strategy at different solid loadings and enzyme dosages were used aiming to reach an ethanol concentration of at least 40 g/L. The results revealed significant improvement in overall ethanol yield after SSF for the selected varieties (84.5–85.6%) compared to industrial bagasse (74.8%). The maximum ethanol concentration from the best performing varieties was 48.6−51.3 g/l and for poor performing varieties was 37.1−38.3 g/l. Ethanol concentration in the fermentation broth was inversely correlated with lignin content and the ratio of xylose to arabinose, but it showed positive correlation with glucose yield from pretreatment-enzymatic hydrolysis. The overall assessment of the varieties showed greater improvement in combined ethanol yields per hectare (71.1–90.7%) for the best performing varieties with respect to industrial sugarcane. The performance in terms of ethanol yields of selected varieties from a number harvest years was evaluated. The results showed considerable variations in ethanol yields across harvests. The results showed that the best variety in terms combined ethanol yield was not maintained across harvests. The differences in ethanol yields were greater among the varieties than across the harvests. Prolonged severe drought significantly affected the ethnol yields of all varieties represented by lower and intermediate lignin content for cane yield compared to that which had highest lignin content. However, carbohydrates content in the bagasse and sugar yield/recovery between the harvest years did not change for the most of the varieties. In summary, the present study provides evidence of the impact of cultivar selection and pretreatment optimisation in increasing conversion efficiency of bagasse. The results demonstrate that varieties with lower lignin and ash content, as well as highly substituted xylan resulted in higher sugar and ethanol yields. These results suggest that lower process requirements can be achieved without adversely affecting juice ethanol and cane yield per hectare. Nonetheless, an attempt to reduce lignin content in the bagasse, to reduce processing requirements for ethanol production, can also target the improvement of crop tolerance toward severe drought conditions. / AFRIKAANSE OPSOMMING: Die ontwikkeling van ―energie-riet‖ rasse vir etanol produksie is goed op dreef, waar beide die sap (eerste generasie etanol) en die bagasse (tweede generasie etanol) geteiken word. Die groot aantal monsters wat tydens teling geproduseer word, bied egter die grootste uitdaging vir die identifisering van nuwe rasse ten einde energie-riet te ontwikkel. In die huidige studie is verdunde suurvoorbehandeling, ensiematiese hidrolise en fermentasie-prosesse gebruik om die verwerkbaarheid van bagasse (veselagtige residu gegenereer na sap suiker ekstraksie) van verskillende suikerrietrasse te evalueer om nuwe variëteite te selekteer wat eienskappe van verbeterde gekombineerde etanolopbrengs (etanol van sap en bagasse) per hektaar toon. Die impak van variëteit-seleksie op gekombineerde etanol opbrengs (etanol van sap en bagasse) per hektaar is ook beoordeel. In die eerste deel van hierdie studie het uit ‗n siftingsproses van 115 suikerriet rasse bestaan wat deur klassieke en presisie (geneties gemodifiseerde) teling gegenereer is. Die sifting was op agronomiese data gebaseer, asook op data van verdunde suur voorafbehandeling en ensimatiese hidrolise eksperimente wat op die bagasse fraksie van elke ras uitgevoer is. Die resultate het op groot variasie in die chemiese samestelling van die bagasse van verskillende rasse gedui. Die strukturele koolhidrate het tussen 66.6 en 77.6% droë massa (DM) gewissel, terwyl die lignien inhoud ‗n variasie van 14.4 en 23.1% DM getoon het. Verder het meeste van die presisie-teling variëteite ‗n hoër arabinoxilaan, maar ‗n laer lignien en as-inhoud as meeste van die klassieke teling rasse gehad. Die gekombineerde suikeropbrengs (GSO) van die bagasse na voorafbehandeling en ensimatiese hidrolise het ook beduidend tussen rasse gewissel, waar ‗n verskil van tot 27.9 g/100g (droë bagasse) waargeneem is. Daar was ‗n omgekeerde korrelasie tussen die gekombineerde suikeropbrengs en die lignien en as-inhoud gewees, maar die opbrengs het ‗n sterk positiewe korrelasie met die strukturele koolhidrate getoon. Die totale potensiële etanol opbrengs per hektaar wat vanaf die suikerriet se oplosbare en nie-oplosbare suikerinhoud bereken is, het ook beduidend tussen rasse verskil (8,602−18,244 L/ha), waar die potensiële etanol opbrengs van die bagasse gedeelte ongeveer een derde van die totale potensiële etanol opbrengs beslaan het. Interessante bevindinge het op sommige rasse met gekombineerde eienskappe van hoë potensiële opbrengs per hektaar asook ‗n hoë omskakelingsvermoë gedui. Derhalwe is ses variëteite (drie van elke telingstegnologie) as voorkeurvariëteite vir verdere studie gekies. Om die etanol opbrengs vanaf die bagasse te verbeter was voorafbehandeling van die voorkeurvariëteite geoptimeer, en waar industriële bagasse vir vergelykingsdoeleindes ingesluit was. Vir die optimering was dit ten doel gestel om die gekombineerde suikeropbrengs van die gekombineerde voorafbehandeling-hidrolise proses te maksimeer. ‗n Sentrale saamgestelde ontwerp (SSO) is gebruik om die effek van temperatuur, suurkonsentrasie en residensietyd op die responsveranderlikes vas te stel wat uiteindelik gebruik is om die maksimum gekombineerde suikeropbrengs te bepaal. Die optimering van die voorafbehandeling is op gram-skaal in ‗n 22.9 ml reaktor, asook op bank-skaal in ‗n 1000 ml reaktor uitgevoer. Beduidende verskille in die suikeropbrengs (xilose, glukose en gekombineerde suiker) is tussen die voorkeurrasse waargeneem. Tussen die rasse wat die beste gevaar het, asook die industriële bagasse, het die gekombineerde suikeropbrengs by optimale voorafbehandeling-hidrolise toestande onderskeidelik met tot 34.1% en 33% op gram-skaal en bank-skaal gevarieer. ‗n Hoë verhouding van koolhidrate tot lignien, asook ‗n lae as-inhoud het tot ‗n toename in die vrystelling van suiker uit die substraat gelei. By matige voorafbehandelingstoestande was die verskille in omskakelingseffektiwiteit tussen rasse groter as onder hewige toestande, wat daarop gedui het dat omskakelingseffektiwiteit grotendeels deur die eienskappe van die biomassa bepaal is. Verder is daar ook gedemonstreer dat die voorbehandelingsomstandighede met temperatuur tussen 184 en 200ºC en verandering van die residensietyd om 'n hewigheidsfaktor van tussen 3.51 en 3.96 te verskaf, 'n gemeenskaplike area gelewer het waar 95% van maksimum gekombineer suiker opbrengs (GSO) verkry kon word. Gelyktydige versuikering en fermentasie (GVF) is na voorafbehandeling op ongewaste, gepersde bagasse substraat by toestande vir die maksimum gekombineerde suikeropbrengs op bank-skaal uitgevoer. Bondel en voerbondel SSF voerstrategie by verskillende vaste ladings en ensiemdoserings is gebruik om 'n etanol konsentrasie van ten minste 40 g/L te bereik. Ná GVF was die algehele etanol opbrengs vir die voorkeurvariëteite (84.5–85.6%) beduidend beter relatief tot die industriële bagasse (74.8%). Die maksimum etanol opbrengs na SSF van die rasse met die beste prestasie was 48.6-51.3 g/L en 37.1-38.3 g/L vir rasse wat swak presteer het. Die etanol konsentrasie in die fermentasiesop was omgekeerd met lignien en die verhouding van xilose tot arabinose gekorreleer, maar was duidelik positief met die glukose opbrengs vanaf voorafbehandeling-hidrolise gekorreleer. ‗n Algemene assessering het op ‗n duidelike verbetering van die voorkeurvariëteite in terme van gekombineerde etanol opbrengs per hektaar gedui (71.1–90.7%), relatief tot die industriële suikerriet. Die prestasie in terme van etanol opbrengs van geselekteerde variëteite is oor 'n reeks oesjare ge-evalueer. Die resultate het aansienlike variasies in etanol opbrengs oor oesjare getoon. Die resultate het gewys dat die beste variëteite in terme van gekombineerde etanol opbrengs nie volhou is oor oeste nie. Die verskille in etanol opbrengste tussen variëteite was groter as die verskille oor oesjare. Verlengde ernstige droogte het die etanol opbrengs van alle variëteite met laer en intermediere lignien inhoud vir rietopbrengs aansienlik beinvloed, in vergelyking met dié wat die hoogste lignien inhoud gehad het. Die koolhidraatinhoud in die bagasse en suiker opbrengs/lewering tussen die oesjare het vir die meeste variëteite egter nie gewissel nie. Ter opsomming, die huidige studie verskaf bewyse van die impak van kultivarseleksie en voorbehandelings optimisering op die verhoging van die omskakelings-doeltreffendheid van bagasse. Die resultate wys dat variëteite met laer lignien- en asinhoud, en hoogs-gesubstitueerde xilaan hoër suiker- en etanol opbrengs gelewer het. Hierdie resultate stel voor dat verminderde voorbehandelingsvereistes bereik kan word sonder om die sap etanol en rietopbrengs per hektar te benadeel. Nieteenstaande, 'n poging om die lignien inhoud van die bagasse te verminder om die verwerkingsvereistes vir etanolproduksie te verminder, kan ook die verbetering van gewas-toleransie tov ernstige droogte-toestande teiken.
3

Caracterização da lignina extraída de bagaço de variedades de cana-de-açúcar e desenvolvimento de eletrodo modificado / Characterization of the extracted lignin residue varieties of sugar cane modified electrode and development

Damaceno, Airton Juliano [UNESP] 08 June 2016 (has links)
Submitted by Airton Juliano Damaceno null (airtonjuliano@gmail.com) on 2016-06-30T13:04:07Z No. of bitstreams: 1 Dissertação_PGQ_Airton Juliano Damaceno.pdf: 4444619 bytes, checksum: 5d7d757e1406c83cd5cafcbf20263a65 (MD5) / Approved for entry into archive by Ana Paula Grisoto (grisotoana@reitoria.unesp.br) on 2016-07-04T13:54:47Z (GMT) No. of bitstreams: 1 damaceno_aj_me_sjrp.pdf: 4444619 bytes, checksum: 5d7d757e1406c83cd5cafcbf20263a65 (MD5) / Made available in DSpace on 2016-07-04T13:54:47Z (GMT). No. of bitstreams: 1 damaceno_aj_me_sjrp.pdf: 4444619 bytes, checksum: 5d7d757e1406c83cd5cafcbf20263a65 (MD5) Previous issue date: 2016-06-08 / O Brasil é líder na produção de cana-de-açúcar e a cada ano o setor vem crescendo e buscando novas formas para diversificar a planta de produção. Tal fato que o nome da indústria evoluiu de sucroalcooleira para sucroenergéticas devido à importância da co-geração de energia a partir da queima do bagaço nas caldeiras. A bioeletricidade de cana-de açúcar caminha a passos constantes e segue com vários projetos pelo país, devido as usinas estarem próximas dos centro e distribuição/consumo. Outra empresa que busca esta diversificação da sua planta são as indústrias de papel e celulose, principalmente dos seus rejeitos (lignina). Este trabalho tem como objetivo extrair lignina diferentes variedades de cana-de-açúcar para identificar a variedade que tem melhor rendimento na extração da lignina e rendimento energético, comparar com o bagaço misto (mistura de várias variedades) e por fim desenvolver imunossensores por meio da reação entre antígenos e anticorpos sobre superfícies condutoras de nanografite a partir da mistura de lignina de bagaço de cana e lignina Kraft. A grande questão é a aplicação eletroquímica com o desenvolvimento de imunossensores devido a alta sensibilidade e principalmente pelo baixo custo e utilização em área clínica. A partir do presente estudo pode-se inferir que a variedade SP83-2847 possui o maior rendimento na extração da lignina, já em relação a perda calorífica a variedade SP84-1431 obteve o maior valor e a RB86-7515 o menor. Após a extração da lignina o bagaço resultante contento celulose e hemicelulose apresentou ser mais estável termicamente. As Técnicas de Raios-x e infravermelho confirmaram a extração da liginina, além de demostrar que existe resquício da fração de celulose e hemicelulose na lignina extraída e que o mesmo ocorre quando extraímos a lignina, uma fração fica na celulose. O eletrodo construído a partir do compósito nonografite-lignina kraft modificado com cobre apresentou atividade eletroquímica, estabilidade mecânica e eletroquímica. / Brazil is a leader in sugarcane production, growing each year and looking for new ways to diversify the plant production. By the way, the industries names evolved from sugar and alcohol to sugar and energy due to its importance in energy cogeneration from bagasse burning in boilers. The cane bioeletricity walks in constant steps and continues with various projects around the country, because the plants are close downtown and distribution and consumption centers. Another company seeking this diversification of the plant are the industries of pulp and paper especially its residues (lignin). This project aims to extract lignin from different varieties of sugarcane to identify the the best performer in the extraction and energy efficiency compared with the mixed bagasse sample (mixture of several varieties) and finally develop immunosensors through the reaction between antigens and antibodies on conductive nanographite surfaces from Kraft lignin and bagasse’s lignin mixture. The great question is the development of immunosensors due to high sensitivity and especially the applicability in the clinical area. From this study it can infer that the SP83-2847 variety has the highest extraction yield of lignin, as compared to loss heat the variety SP84-1431 obtained the highest value and the lowest was the RB86-7515. After lignin extraction, the resulting residue containing cellulose and hemicellulose showed to be more thermally stable. XRD and FTIR results confirmed lignin extraction and demonstrated that there is remnant cellulose and hemicellulose fraction of extracted lignin and the same occurs when we extract lignin, a fraction remains in cellulose. The electrode constructed from the composite kraft lignin-nonographite modified with copper showed electrochemical activity, mechanical stability and electrochemistry. These were applied to investigate uric acid in simulated blood plasma samples. For sure lignin is a byproduct that in near future will be a very promising and profitable raw materials in different industries.
4

Season effects on the potential biomass and sucrose accumulation of some commercial cultivars of sugarcane.

Donaldson, Robin Albert. January 2009 (has links)
An experiment was conducted at Pongola (27°24´S, 31°25´E; 308m altitude) in South Africa to study the effects of season on growth and potential biomass and sucrose yields on nine commercial sugarcane cultivars. The treatments that were the focus in this study consisted of the cultivars NCo376, N25 and N26 ratooned in March, April, May, August and December. The crops were well fertilized and kept free of weeds and diseases. Irrigation applications were scheduled with a computer programme to keep the crops free of stress at all times. Shoot populations were counted regularly to study shoot density dynamics. Leaf appearance rates, sizes, numbers and senescence were measured to study the development of green leaf area. Green foliage, dead trash and stalk mass were measured at 4, 8, 10, 11 and 12 months in each of the starting times and also at 13 months in the March, April and May ratoon crops. The fibre, sucrose and non-sucrose content of stalks were determined on these harvesting occasions. Yields were calculated in terms of individual shoots and area (m‾²). The fraction of PAR intercepted by the developing canopies was measured until full canopy and daily intercepted solar radiation was interpolated for the entire crop. An automated meteorological station adjacent to the experiment site provided daily weather data. Shoot densities were described by thermal time, however, average peak shoot densities were lowest in the May ratoon (31.8 m‾²) and highest in the December ratoon (48.7 m‾²). Shoot senescence was most rapid in August and December ratoons. At the final harvest shoot densities were highest in the March, April and May ratoon (14.8 to 14.2 m‾²) crops. NCo376 (16.4 m‾²) and N25 (13.6 m‾²) had higher final shoot densities than N26 (10.5 m‾²). Leaf appearance rate was also well described by thermal time, however the first twelve leaves took longer to appear in crops started in December i.e. the first phyllochron was longer (109.5°C d) than in crops started at other times (80.4 to 94.5°C d). Leaves produced during the early stages of December and August ratoon crops were larger (e.g leaf number 13 of N26 was 443 to 378 cm²) than in other crops. April and May ratoon crops produced much smaller leaves (e.g leaf number 9 of N26 was 170 to 105 cm²). Leaf senescence was slower in April and May ratoon crops (0.36 to 0.46 leaves per 100°C d) than in March (0.51 to 0.59 leaves per 100°C d) or August and December ratoon crops (0.60 to 0.68 leaves per 100°C d). December ratoon crops produced very high green leaf area indexes (LAI) (>7.0) at the age of four months; all other crops had lower LAI (3.3 to 6.0) and most peaked later (8 to 11 months of age). The LAI of N25 peaked at the age of 8 months while NCo376 and N26 peaked when 10 to 11 months old. Seasonal fraction of solar radiation intercepted was high in the March ratoon crops (0.84) and declined to 0.63 in the May ratoon crops and was highest in the December ratoon crop (0.88). N26 intercepted lower fractions of PAR than NCo376 and N25, particularly in the May and August ratoon crops. Biomass accumulation, although initially slow, tended to be linear in the March, April and May ratoon crops in relation to intercepted radiation. In August and particularly in the December ratoons biomass accumulation was initially rapid, and RUEs were high (2.65 g MJ‾¹ at 114 days in the December ratoon crops). However, biomass accumulation slowed when these December ratoon crops experienced winter. Low growth rates after winter, as well as low shoot densities resulted in December ratoon crops having produced significantly lower above-ground biomass yields (4 886 g m‾² at the age of 12 months) than March, April and May ratoon crops (6 760 to 5 715 gm‾² at the age of 12 months). The December ratoon crops responded poorly to the better growing conditions in spring and second summer and accumulated little biomass after winter. N26 shoots grew rapidly during the first 6-8 months of the December ratoon crop and it yielded better than NCo376 and N25 at harvesting (biomass yields were 5.8 and 13.3% higher at the age of 12 months, respectively). April ratoons produced significantly higher biomass yields (6 760 g m‾²) than March, August and December ratoons. May ratoon crops produced the highest cane fresh mass yields (18 151 g m‾²) and April, May and August ratoons produced significantly higher sucrose yields than March and December ratoons. The highest sucrose yield was produced by the April ratoon crop of N26 (2 385 g m‾²). On average, across the five ratoon dates, NCo376, N25 and N26 produced similar sucrose yields (1 902 to 1 959 g m‾²). Foliage production was severely limited during winter while sucrose accumulation was less affected by the low temperatures, resulting in accumulation of sucrose in the top sections of the culm. Low temperatures slowed the development of canopies in March, April and May ratoon crops, but these crops were able to recover their growth rates and produced high biomass and sucrose yields at the age of 12 months. The December ratoons experienced low winter temperatures (<12°C) when they had already accumulated relatively high yields and became moribund during winter. They were unable to accumulate any significant amounts of biomass during final four months before the final harvest at the age of 12 months. NCo376, N25 and N26 all yielded poorly in the December ratoon crop. However, there are cultivars that appear to be less sensitive to the low winters and are able to yield relatively well when they are ratooned in December. Sucrose yields of March, April and May ratoons were increased substantially (10.6 to 22.7%) by harvesting at the age of 13 months rather than at the age of 12 months. The poor growth of December ratoon crops after winter is possibly due to the recently revealed feedback signaling by high sugar levels induced by low temperatures on photosynthesis. The incorporation of the effects of low temperature and the feedback signaling with the objective of better simulating yields of December ratoons is a proposed study at the South African Sugarcane Research Institute. Annual mean sucrose yields of NCo376, N25 and N26 crops were estimated to be 17% higher in March than in December ratoons. The suggested short term remedy therefore of the poor December yields is to shift milling seasons to include March and exclude December harvested crops in the northern irrigated regions. March crops grow vigorously during the months close to harvesting and therefore have lower levels of sucrose content which can be corrected with chemical ripeners. / Thesis (Ph.D.)-University of KwaZulu-Natal, Pietermaritzburg, 2009.

Page generated in 0.0745 seconds