Spelling suggestions: "subject:"quite minimisant"" "subject:"quite minimizantes""
1 |
Contribution à l'analyse variationnelle : stabilité des cônes tangents et normaux et convexité des ensembles de Chebyshev / Contribution to variational analysis : stability of tangent and normal cones and convexity of Chebyshev setsZakaryan, Taron 19 December 2014 (has links)
Le but de cette thèse est d'étudier les trois problèmes suivantes : 1) On s'intéresse à la stabilité des cônes normaux et des sous-différentiels via deux types de convergence d'ensembles et de fonctions : La convergence au sens de Mosco et celle d'Attouch-Wets. Les résultats obtenus peuvent être vus comme une extension du théorème d'Attouch aux fonctions non nécessairement convexes sur des espaces de Banach localement uniformément convexes. 2) Pour une bornologie β donnée sur un espace de Banach X, on étudie la validité de la formule suivante (…). Ici Tβ(C; x) et Tc(C; x) désignent le β -cône tangent et le cône tangent de Clarke à C en x. On montre que si, X x X est ∂β-« trusted » alors cette formule est valable pour tout ensemble fermé non vide C ⊂ X et x ∈ C. Cette classe d'espaces contient les espaces ayant une norme équivalent β-différentiable, etplus généralement les espaces possédant une fonction "bosse" lipschitzienne et β-différentiable). Comme conséquence, on obtient que pour la bornologie de Fréchet, cette formule caractérise les espaces d'Asplund. 3) On examine la convexité des ensembles de Chebyshev. Il est bien connu que, dans un espace normé réflexif ayant la propriété Kadec-Klee, tout ensemble de Chebyshev faiblement fermé est convexe. On démontre que la condition de faible fermeture peut être remplacée par la fermeture faible locale, c'est-à-dire pour tout x ∈ C il existe ∈ > 0 tel que C ∩ B(x, ε) est faiblement fermé. On montre aussi que la propriété Kadec-Klee n'est plus exigée lorsque l'ensemble de Chebyshev est représenté comme une union d'ensembles convexes fermés. / The aim of this thesis is to study the following three problems: 1) We are concerned with the behavior of normal cones and subdifferentials with respect to two types of convergence of sets and functions: Mosco and Attouch-Wets convergences. Our analysis is devoted to proximal, Fréchet, and Mordukhovich limiting normal cones and subdifferentials. The results obtained can be seen as extensions of Attouch theorem to the context of non-convex functions on locally uniformly convex Banach space. 2) For a given bornology β on a Banach space X we are interested in the validity of the following "lim inf" formula (…).Here Tβ(C; x) and Tc(C; x) denote the β-tangent cone and the Clarke tangent cone to C at x. We proved that it holds true for every closed set C ⊂ X and any x ∈ C, provided that the space X x X is ∂β-trusted. The trustworthiness includes spaces with an equivalent β-differentiable norm or more generally with a Lipschitz β-differentiable bump function. As a consequence, we show that for the Fréchet bornology, this "lim inf" formula characterizes in fact the Asplund property of X. 3) We investigate the convexity of Chebyshev sets. It is well known that in a smooth reflexive Banach space with the Kadec-Klee property every weakly closed Chebyshev subset is convex. We prove that the condition of the weak closedness can be replaced by the local weak closedness, that is, for any x ∈ C there is ∈ > 0 such that C ∩ B(x, ε) is weakly closed. We also prove that the Kadec-Klee property is not required when the Chebyshev set is represented by a finite union of closed convex sets.
|
Page generated in 0.0576 seconds